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ABSTRACT

This thesis emphasizes two frequency-domain techniques which uniquely employ ra-

dio frequency (RF) excitations to investigate the static and dynamic properties of novel

magnetic and superconducting materials. The first technique is a tunnel-diode resonator

(TDR) which detects bulk changes in the dynamic susceptibility, χ = dM/dH. The ca-

pability of TDR to operate at low temperatures (less than 100 mK) and high fields (up to

65 T in pulsed fields) was critical for investigations of the antiferromagnetically correlated

magnetic molecules Cr12Cu2 and Cr12Ln4 (Ln = Y, Eu, Gd, Tb, Dy, Ho, Er, Yb), and

the superconductor SrFe2(As1−xPx)2 (x = 0.35). Investigations of Cr12Cu2 and Cr12Ln4

demonstrates the first implementation of TDR to experimentally investigate the low-

lying energy spectra of magnetic molecules in pulsed magnetic fields. Zeeman splitting

of the quantum spin states results in transitions between field-dependent ground state

energy levels observed as peaks in dM/dH at 600 mK, and demonstrate good agreement

with theoretical calculations using a isotropic Heisenberg spin Hamiltonian. Increas-

ing temperature to 2.5 K, TDR reveals a rich spectrum of frequency-dependent level

crossings from thermally populated excited states which cannot be observed by many

conventional static magnetometry techniques. The last study presented uses TDR in

pulsed fields to determine the temperature-dependent upper-critical field Hc2 to investi-

gate the effects of columnar defects arising from heavy ion irradiation of SrFe2(As1−xPx)2.

Results suggest irradiation uniformly suppresses Tc and Hc2, and does not introduce ad-

ditional features on Hc2(T) and the shapes of the anisotropic Hc2 curves indicates a

nodal superconducting gap. The second technique is nuclear magnetic resonance (NMR)

which yields site specific magnetic and electronic information arising from hyperfine in-
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teractions for select magnetic nuclei. NMR spectra and nuclear spin-lattice relaxation

measurements are reported for the geometrically frustrated magnetic molecule W72V30,

and for BaMn2As2 and Ba1−xKxMn2As2 (with K-concentration x = 0.04 - 0.40) which

are analogs of the high Tc iron arsenides. For the magnetic molecule W72V30, 1H and 51V

NMR and DC magnetization were used to investigate geometric frustration arising from

antiferromagnetic interactions between 30 V 4+ ions occupying the edge sites of an icosi-

dodecahedron. This system serves as a molecular representation of the 2-dimensional

kagome lattice whose finite-size allows precise quantum calculations. Analysis of W72V30

data suggests a large distribution of exchange values are necessary to characterize the

field and temperature-dependent magnetic properties. For the insulating BaMn2As2 and

hole-doped metallic Ba1−xKxMn2As2, both local moment antiferromagnets, 55Mn and

75As NMR spectra and spin-lattice relaxation rates 1/T1 were conducted to investigate

the local magnetic and electronic properties as a function of K-concentration x. NMR

independently confirms G-type antiferromagnetism from spectra measurements, while a

Korringa relation in 1/T1 indicates conduction electrons in both the Mn 3d and As 4d

orbitals. The observation of ferromagnetic enhancement of the 55Mn NMR signal and no

appreciable shift observed in the 75As spectra, combined with the absence of a structural

phase transition in neutron diffraction measurements suggests, the K-doped system may

exhibit a previously unseen coexistence of local-moment antiferromagnetism from the

Mn2+ moments and weak ferromagnetism, possibly arising from the Mn 3d orbitals. In

summary, the data presented in this work demonstrates the diversity of novel materials

and physical properties which can be investigated by the RF techniques TDR and NMR.
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CHAPTER 1. INTRODUCTION

The development of new radio-frequency (RF) techniques and novel materials have

played a pivotal role in the world’s modern technology-driven economy. Extensive re-

search efforts to further understand the basic physical properties of magnetism and super-

conductivity, especially those derived from rare-earth materials such as the neodymium

magnet Nd2Fe14B (abbreviated as NdFeB) where the 4f Nd ion features a large axial

anisotropy, have and will continue to drive advancements in such areas as computers,

motors, generators, and clean energy technologies such as wind turbines, photovoltaics,

and electric vehicles. It is important for physicists to delve deeper into understanding

the quantum mechanics of the natural world, for this fundamental research into the

small scale is a necessary precursor for big innovation. Historically Ames Laboratory has

been at the forefront of rare earth materials’ science and technology since its establish-

ment during the Manhattan Project after developing an efficient process for producing

large quantities of high-purity rare-earth elements. The commitment and strong research

record of The Ames Laboratory and Iowa State University were recently (January 2013)

recognized by the U.S. Department of Energy through establishing an Energy Innovation

Hub to continue this research. This initiative highlights the importance of collaboration

between public and private institutions in understanding and developing new energy

critical-materials.

This thesis focuses on RF spectroscopic techniques to investigate systems spanning

two major and closely intertwined areas of condensed matter physics: magnetism and

superconductivity. The remainder of this chapter will focus on basic introductions and
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motivations for this work. Chapter 2 will introduce the fundamental principles for a

tunnel-diode resonator (TDR) and nuclear magnetic resonance (NMR), the two pri-

marily employed RF techniques used in this thesis. Chapters 3, 4, and 5 will discuss

the experimental investigations of magnetic molecules, classified by their organometal-

lic structures which prevent long range magnetic ordering. The macroscopic magnetic

properties of these systems can be characterized by the microscopic magnetism of each

individual molecule. Chapters 3 and 4 focus on a class of magnetic molecules known as

antiferromagnetic (AFM) rings, which can be treated as a 1-dimensional chain of mag-

netic ions. Chapter 5 focuses on a member of a family of spherical molecules known as

Keplerates where antiferromagnetically interacting ions occupy the edge sites of corner-

sharing triangles resulting in geometric spin frustration. Chapter 6 and 7 focus on further

understanding the origins of superconductivity for systems with the same structure as

the family of high-TC ‘122’ superconductors. Chapter 6 investigates a system which does

not exhibit superconductivity, but whose properties share those of both the high-TC

cuprates and iron arscenides. Chapter 7 investigates the effects of heavy-ion irradiation

on superconductivity by investigating the temperature-dependent upper critical field.

Chapter 8 ends with a general conclusion.

The work in Chapters 3, 4, and 5 center around a class of molecule based mag-

nets spawned from advancements in organometallic chemistry over the last few decades.

Molecule based magnets feature a lattice of molecules where each molecule contains a

cluster of magnetic ions (often 3d transition metals) bridged by organic ligands and can

be created with a variety of shapes, symmetries, and magnetic ions: 1D rings, 3D cubes

and spheres, 3d transition metals and 4f rare-earth elements [4–6]. These so called mag-

netic molecules - or single molecule magnets (SMMs) for systems with high spin ground

states - are characterized as nanometer-scale magnets which act as zero-dimensional

model systems. The macroscopic magnetic properties are governed by the local-moment

magnetic behavior of each microscopic molecule with total spin ground states ranging
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from zero to high spin states, up to 51/2 for Mn25 [7]. Magnetic molecules typically

experience relatively strong intramolecular magnetic exchange interactions, compared to

very weak intermolecular interactions which are shielded by large organic ligand shells.

The finite size of the spin clusters allows direct comparisons between direct diagonal-

ization of isotropic spin Hamiltonian quantum calculations and experimental results.

The discussion of magnetic molecules in this work investigates issues in magnetism such

as transitions from classical to quantum behavior, the spectrum of discrete low-lying

energy levels, and critical slowing down and spin dynamics by studying two classes of

molecules: 1) structures which are an extension of AFM rings featuring a 1-dimensional

array of magnetic ions and 2) quasi-spherical Keplerate structures to understand the

physical characteristics of geometric frustration arising from ions at edge sites of corner

sharing triangles with competing AFM interactions. Some of the many technological

implications of quantum devices tied to further understanding the magnetic properties

of magnetic molecules include spintronics, magnetic recording, ultrafast switches, and

possible application as qubits for quantum computational technology [8, 9].

Chapter 3 looks to establish TDR as a spectroscopic probe of the low lying en-

ergy levels while simultaneously validating the use of quantum Monte Carlo simulations

using a simple isotropic Heisenberg Hamiltonian in the special case where intermolecu-

lar interactions, anisotropy, and Dzyaloshinsky Moriya interactions are ignored. Using

pulsed magnetic fields at low-temperatures, TDR investigates Cr12Cu2, effectively a 1-

dimensional heterometallic magnetic molecule featuring Cr3+ ions with S = 3/2 and

Cu2+ ions with S = 1/2. TDR measurements detects multiple temperature-dependent

peaks. It will be shown that these correspond to ground state and excited state level

crossings, in good agreement with analysis from QMC.

Chapter 4 introduces Ln ions to Cr6 “horseshoes” in the form Cr12Ln4 (Ln = Y, Eu,

Gd, Tb, Dy, Ho, Er, and Yb) to further understand the nature of 3d− 4f interactions.

Ln ions are a powerful tool for effectively tuning a number of physical parameters such
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as unit cell size, size of the local moment and anisotropy, and magnetic Curie or Neél

ordering temperatures in conventional intermetallic compounds [10–14]. This poses the

question of whether introducing various Ln ions would systematically alter the zero-field

energy levels in magnetic molecules? There is also great interest in developing systems

with Ising type anisotropy as observed in Nd for NdFeB for developing more powerful

and energy efficient magnets. It will be shown that switching between Ln ions in the

magnetic molecule does not have the effect of tuning the low lying energy levels, but

rather increases them indiscriminately.

Chapter 5 looks at 51V and 1H NMR to investigate W72V30, an icosidodecahedron

system which serves as a finite-sized analog to the 2-dimensional kagomé lattice of in-

terlocking pentagons and triangles [15, 16]. Due to the low spin S = 1/2 for V 4+ ions,

it is possible to conduct highly accurate quantum calculations rather than being lim-

ited to classical approximations, despite the large dimension for the Hilbert space (230

=1,073,741,824) [17, 18]. Surprisingly, this system does not observe field induced steps

in the magnetization as a result of quantum spin transitions determined for a regular

icosidodecahedron with a single nearest-neighbor exchange interaction. Instead the sys-

tem exhibits an inhomogeneous distribution of V-V exchange constants which vary by

as much at 30%.

Chapters 6 and 7 work to understand the origins of high-temperature superconduc-

tivity in the family with ThCr2Si2-type structure 122 iron pnictides. For these systems,

the onset of superconductivity has been observed by hole-doping with alkali earth met-

als, transition metal substitutions, isoelectron substitution, and under high pressure.

Chapter 6 uses 55Mn and 75As NMR spectrum and relaxation measurements to study

the electronic and magnetic properties of Ba1−xKxMn2As2. While this system does not

demonstrate superconductivity, the properties of the parent compound and hole doped

compound span those of the two well studied families of high-TC superconductors. Re-

sults suggest a previously unobserved coexistence of local moment antiferromagnetism
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and itinerant ferromagnetism arising from the Mn ions. In Chapter 7 we found evidence

that columnar defects in the structure for isolectron P-substituted SrFe(As1−xPx)2 caused

by heavy ion irradiation suppress Tc and Hc2 in the anisotropic nodal superconductor

using TDR in pulsed magnetic fields up to 65 T.

1.1 Introduction to Magnetism

The magnetic susceptibility is typically defined for a collection of spins by the change

in magnetization (M) versus a change in magnetic field (H). This is defined in differential

form as

χ =
∂M

∂H
. (1.1)

If H is sufficiently weak or T sufficiently large then χ can be characterized indepen-

dent of H, M = χH. The magnitude of χ is typically comprised from the sum of

all magnetic contributions in the sample, however, the dominant terms typically arise

from ions with unpaired electrons. The interesting physics discussed in this work arise

from the magnetic susceptibility of correlated magnetic moments and to less extent the

non-interacting paramagnetic susceptibility at high temperatures, in contrast to the dia-

magnetic susceptibility arising from filled electron orbitals, typically weaker by several

orders of magnitude.

If we consider a magnetic system with an energy spectrum En(n = 0, 1, 2, . . . ) in an

external magnetic field H, then the microscopic magnetization for each energy level is

given as

µn = −∂En
∂H

. (1.2)

The macroscopic magnetization could then be expressed in terms of the classical Boltz-

mann distribution,

M = NA〈µn〉 = NA

∑
n(−∂En/∂H)exp(−En/kBT )∑

n exp(−En/kBT )
, (1.3)



www.manaraa.com

6

where kB is the Boltzmann constant, NA is Avogadro’s number, H is an applied magnetic

field, T is the temperature, and the summation in the denominator is defined as the

partition function Z. The magnetization M and susceptibility χ can be expressed in

terms of the partition function as

M = NAkBT
∂ lnZ

∂H
, (1.4)

and

χ = NAkBT
∂2 lnZ

∂H2
. (1.5)

From Eqn. (1.4), it follows that the field dependent magnetization per unit volume V

can be expressed in terms of the total angular momentum J as

M =
N

V
(gµBJ)BJ(βgµBJH). (1.6)

where µB is the Bohr magneton, g is the Landé g-factor (typically ≈ 2), β = 1/kBT , and

BJ(x) is the Brillouin function defined by

BJ(x) =
2J + 1

2J
coth

2J + 1

2J
x− 1

2J
coth

1

2J
x. (1.7)

with x = βgµBJH.

In the special case of high fields or low temperatures (x� 1), BJ(x) ' 1, correspond-

ing to magnetic saturation M = N
V

(gµBJ)BJ . On the other hand, at low fields and high

temperatures (x � 1) the function BJ(x) can be written as BJ(x) ≈ 1
3
(1 + 1

J
)x + . . .

resulting in a collection of non-interacting spins. In the limit of low fields and high tem-

peratures, the susceptibility is inversely proportional to T and expressed in the simple

form

χ =
C

T
. (1.8)

This expression is known as Curie’s law with constant C given by

C = n
NA(gµB)2

3kB
J(J + 1), (1.9)
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where n is the number of spin moments per molecule and J is the total angular moment.

It is convenient to note that NAµ
2
B/3kB ≈ 0.125 = 1/8 in cgs·emu units.

If the system experiences an interaction between magnetic moments then it is neces-

sary to modify the Curie law in Eqn. (1.8). The magnetic susceptibility for interacting

systems (FM or AFM) can be treated to good approximation in the paramagnetic region

above the ordering temperature (Tc of TN) by the Curie-Weiss law. The Curie-Weiss law

is given as

χ =
C

T −Θ
. (1.10)

Here θ is the characteristic Weiss temperature given by

Θ =
zJ(J + 1)Jex

3kB
, (1.11)

where z is the number of nearest neighbors, J is the total orbital angular momentum,

and Jex is the magnitude of the exchange energy. Positive values of θ (i.e. positive Jex)

typically correspond to ferromagnetic ordering, while negative values indicate antifer-

romagnetic ordering. The magnitude of θ often serves as good approximation for the

ordering temperature. If there is no exchange energy (Jex = 0) then the system remains

in a paramagnetic state, θ goes to zero, and you recover the simple form of Curie’s law.
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CHAPTER 2. MEASUREMENT TECHNIQUES

2.1 Introduction

Oscillators have long served as versatile transducers for experimental measurements.

The frequency of electrical oscillators can be measured with great precision and can

operate in compact environments under extreme conditions, such as extremely low tem-

peratures and high magnetic fields. Oscillators which operate in the radio-frequency

(RF) range are particularly attractive for measuring an array of physical properties in

solids: thermal expansion, magnetostriction, electrostriction, surface impedance, and

magnetic and electric susceptibilities. Measurements of novel magnetic and supercon-

ducting materials typically examine the response of a sample’s ac magnetic susceptibility.

In conjunction with SQUID measurements, two very different RF techniques were used

extensively in this work: a tunnel-diode resonator (TDR) and nuclear magnetic resonance

(NMR).

While both techniques employ inductor-capacitor (LC) circuits operating in the RF

range, the operating principles are drastically different. A TDR operates by detecting

shifts in the resonance frequency of an LC tank circuit driven by a tunnel-diode capable

of better than ppb sensitivity [19]. Measured frequency shifts for TDR reflect the net

response of all quantities which affect the inductance or capacitance of the tank circuit.

For this reason TDR is sometimes referred to as a ’bulk’ measurement.

NMR operates by tuning an LC circuit to the Larmor frequency, for which nuclei

absorb and re-emit electromagnetic radiation in an external magnetic field. [20, 21]
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This resonance method allows one to isolate a particular magnetic contribution, even

if relatively weak, from the total magnetic susceptibility. In practice, NMR allows a

user to probe the electromagnetic environment for specific nuclei within a system whose

behavior is influenced by nearby electrons through hyperfine interactions. Hence NMR

is referred to as a ‘local’ measurement.

This chapter will discuss the operating principles of each technique.

2.2 Tunnel-diode resonator

The tunnel-diode (TD) is the main operating component of a TDR circuit first de-

veloped in 1957 by Leo Esaki while working at Tokyo Tsushin Kogyoa, the company

today known as Sony. Consisting of heavily doped p- and n-type terminals, a TD is a

semiconductor diode with a very narrow (∼100 Å) p − n junction. The I-V curve for

a typical TD is shown in Fig. 2.1. When a DC voltage is applied in the forward bias

operation, a TD I-V curve features a region of negative differential resistance. At low

voltages (< 0.5 V in Fig. 2.1) electrons from the conduction band of the n-side will tunnel

to the hole states of the valence band of the p-side through the narrow p − n junction,

creating a forward bias tunnel current. In this region the energy of the potential barrier

is high, while the energy of the electron and conduction bands overlap. As the voltage

increases, the region where the energy of electrons in the conduction band overlap with

the hole band starts to decrease and leads to a decrease in the tunneling current. This is

the negative differential resistance region marked by the red line in Fig. 2.1. At higher

voltages the potential barrier decreases and the TD produces a forward diffusion current

as seen in a regular p− n diode. The negative differential characteristic feature allows a

TD to function as a low current ac power source capable of very fast operation (∼ GHz).

Esaki would later share the 1973 Nobel Prize in Physics with Ivar Giaever and Brian

David Josephson for their experimental and theoretical contributions regarding electron
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tunneling in semiconductors and superconductors.
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Figure 2.1: This figure shows the I-V charactersitic for a tunnel-diode for a TDR exper-
iment. The red line highlights the characteristic negative differential resistance region.
A bias voltage set in this region allows a tunnel-diode to act as an ac power source.

TDR was extensively developed as an experimental probe starting in the 1970’s. Early

setups were devised for measuring NMR spectra [22, 23] and magnetic susceptibility [24–

26]. The circuit design and optimization put forth by Van Degrift [27] has largely served

as a model for the circuit designed for this study. His setup was designed to measure

changes in dielectric constants down to liquid helium temperatures with part-per-billion

sensitivity.

This work primarily focuses on TDR as an instrument for measuring magnetic sus-

ceptibility for isolated magnetic clusters which experience antiferromagnetic or ferromag-

netic exchange couplings. The robust performance of TDR is ideal for these systems as

measurements often require extremely low temperature ranges (T down to 0.05 mK in a
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dilution refrigerator) and extremely high magnetic fields (up to 65 T in pulsed magnetic

fields). The last chapter uses TDR as a means of determining the upper-critical field Hc2

for superconductors.

2.2.1 Operating principles of TDR

The operating principle of a TDR centers on a TD which drives a self-resonating LC

tank circuit. When driving a LC tank circuit, the frequency of the ac current matches

the resonance frequency of the LC circuit. In this sense the TDR locks on to the res-

onance frequency and changes in frequency are directly associated with variations of

inductance or capacitance. Optimized circuits with good thermal stability can resonate

in the megahertz range with a frequency stability better than 0.01 Hz.

For this work a sample is placed directly within the primary inductor coil of a TDR’s

LC tank circuit. The magnetic response of a sample to varying temperature (T ) or an

applied magnetic field (H) will change the the inductance of the primary coil, resulting

in a shift of the TDR resonance frequency. This shift in the resonance frequency reflects

the sample’s magnetic susceptibility, χ(H,T ), measured in the frequency domain. The

resonant frequency for an LC circuit is expressed generally as

f0 =
1

2π
√
LC

, (2.1)

with inductance L and capacitance C. If a perturbation introduce a small change of

inductance to L+ ∆L than the shifted frequency can be expressed as

f0 + ∆f =
1

2π
√

(L+ ∆L)C
= f0(1 +

∆L

L
)−1/2. (2.2)

By taking the binomial expansion in the case of small ∆L this term can be approximated

as

∆f ≈ −1

2

∆L

L
f0. (2.3)

The self inductance for the coil is defined by

L =
dΦ

dI
, (2.4)
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where Φ is the magnetic flux through the coil and I is the ac current through the coil

inducing the flux. The integrated magnetic flux for an empty coil is given by

Φ = B0Vc, (2.5)

where B0 is the flux density from the TDR and Vc is the volume of the coil. The flux

density is, generally, given by B = H+4πM in CGS units, and for an empty coil the flux

density B0 is equal to the magnetic field H0, since the magnetic moment M for vacuum

would be zero. For a sample in a magnetic field H0, the flux density would be expressed

as

Bs = H0 + 4πMs, (2.6)

with a non-zero sample magnetization per unit volume Ms for the sample. If the sample

is placed inside the TDR coil then the change in magnetic flux as a result of the sample,

Φ′, is given by

Φ′ = B0(Vc − Vs) +BsVs = B0Vc + (Bs −B0)Vs. (2.7)

This expression is simply the sum of contributions from the sample and the empty coil,

with sample volume Vs. Using Eqn. (2.6) we can write Eqn. (2.7) as

Φ′ = H0Vc + 4πMsVs, (2.8)

separating contributions from the empty coil and the sample. The new inductance is

given by the change in magnetic flux with a sample Φ′ with respect to current. Using

the chain rule this can be expressed in terms of an applied field H and simplifying we

get

L′ =
dΦ′

dI
=
dΦ′

dH

dH

dI
= Vc

dH

dI
+ 4πVs

dMs

dH

dH

dI
= L+ ∆L. (2.9)

This expresses the new inductance for a coil containing a sample in terms of the empty

coil inductance, L = Vc
dH
dI

, and a change in this inductance arising from the sample,

∆L = 4πVs
dMs

dH
dH
dI

. From here readily we see the ratio for the change in inductance
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versus the original inductance:

∆L

L
= 4π

Vs
Vc
χ′. (2.10)

Plugging this result in to Eqn. (2.3) and rearranging we get

∆f

f0

≈ −4π

2

Vs
Vc
χ′, (2.11)

which relates the change in the TDR frequency in terms of the real part of the ac-magnetic

susceptibility χ′ multiplied by a constant, where the constant is expressed simply in

terms of the empty coil frequency and the volumes of the sample and the coil. It is clear

from this expression that we can maximize the signal intensity (∆f) by maximizing the

filling factor, Vs/Vc, and can increase the signal intensity by increasing the LC resonant

frequency f0. As a result, an increase (decrease) in the magnetic susceptibility will result

in a decrease (increase) in the resonant frequency.

For measurements in this work, the ac magnetic field generated within the TDR coil

runs collinear with applied magnetic fields so measurements reflect the real part (χ′) of

the complex susceptibility χzz(ω) = χ′zz(ω)+iχ′′zz(ω) [24]. Therefore, from linear response

theory [28], TDR probes the real part of the longitudinal magnetic susceptibility given

as

χzz(ω) = χzz(0)

[
1− iω lim

ε→0+

∫ ∞
0

dte−(iω+ε)t ×
(
〈Sz(0)Sz(t)〉 − 〈Sz〉2

〈S2
z 〉 − 〈Sz〉2

)]
, (2.12)

where 〈〉 represent thermal averages, Sz(t) is the time dependence of the total spin

operator Sz from the Heisenberg Hamiltonian, and χzz(0) is the static susceptibility.

For a purely isotropic Heisenberg system where Sz commutes with the Hamiltonian, the

term 〈Sz(0)Sz(t)〉 is independent of time. Therefore χzz(ω) = χzz(0) and there is no

frequency-dependent component for a purely isotropic Hamiltonian.

In order to observe the excited state level crossings discussed in Chapters 3 and 4, a

model must allow for non-zero off diagonal matrix elements, 〈α|Sz|β〉, arising from very
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small anisotropic terms [29]. Such terms would permit a time-dependence where

〈Sz(0)Sz(t)〉 =
1

Z

∑
α,β

e−Eα/kBT |〈α|Sz|β〉|2ei(Eβ−Eα)t/h̄, (2.13)

with |α〉 and Eα, |β〉 and Eβ denote eigenvectors and eigenenergies of the Heisenberg

Hamiltonian.

For a general Hamiltonian which does not commute with S2 andSz, plugging Eqn. (2.13)

in to Eqn. (2.12) gives

χzz(ω) = χzz(0)

[
1− h̄ω

Z(〈S2
z 〉 − 〈Sz〉2

∑
α,β

e−Eα/kBT
|〈α|Sz|β〉|2

h̄ω − (Eβ − Eα)

]
, (2.14)

with small, non-zero values for 〈Sz(0)Sz(t)〉. Thus, a TDR with resonant frequency ω

will cause a resonance when h̄ω ≥ Eβ − Eα ≈ 1 mK at 15 MHz.

While TDR is good for determining changes in χ with high precision, assigning the

absolute value for χ is often not straightforward. Absolute values are best achieved by

comparing background subtracted data to DC SQUID measurements. Since a TDR mea-

surement responds to the total change in the primary coil inductance, the frequency shift

reflects the susceptibility of all magnetic components present in the coil. For example, in

addition to the intrinsic magnetization of interest one may also detect other contributions

which may make subtracting the background signal difficult. These contributions could

include the nuclear spin moment, diamagnetic contributions, or impurity contributions

to name a few. In addition, the susceptibility may exhibit a frequency dependence, and

the ac-susceptibility measured by TDR may exhibit a non-linear response to the DC

susceptibility measured by SQUID, often at low temperatures. This is perhaps from

the critical slowing down of the electron spin, due to a short T1, resulting in saturation

[24]. Therefore, TDR is best suited for observing abrupt changes in susceptibility as

observed in AFM spin-cluster, the second order phase change from a paramagnetic to

ferromagnetic phase or normal-superconducting transitions.
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2.2.2 General TDR setup

The circuit diagram for a simple TDR is shown in Fig. 2.3. The LC tank circuit

consists of a primary inductor (sample coil) and capacitor represented by LP and CP,

respectively. Samples are placed at the center of the sample coil which is typically a

solenoid coil, however, pulsed field measurements of upper-critical fields for thin plate

samples of SrFe2(As1−xPx)2 were conducted on flat “pancake” coils (see Fig. 2.2). Ca-

pacitors C1 (∼ 50 pF) and C2 (∼ 10 nF) act as filters to decouple the tank circuit from

the room-temperature electronics. At operating frequencies the small value for C1 with

an RF impedance of ∼ 320 Ω and the large value for C2 with an rf impedance of ∼ 1.5 Ω,

permit only a small portion of the signal to pass up to the electronics. Resistors R1 and

R2 act as voltage dividers to properly bias the tunnel-diode, and R3 acts as a parasitic

resistor to reduce unwanted oscillations. The typical resistor values are: R1 ≈ 1 kΩ; R2

and R3 ≈ 300Ω.

Figure 2.2: Example of a flat “pancake” coil in which a wire is wrapped in-plane around
a central point increasing the radius for successive turns.

Three different TDR setups were necessary to accommodate the experimental envi-

ronments and cryogenic equipment in this work. Though measurements in the dilution
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To  
Electronics 

Figure 2.3: Circuit diagram for a basic TDR circuit which connects to the external
hardware described in Fig. 2.4. The primary inductor LP and capacitor CP act as an
LC tank circuit driven by the tunnel-diode (TD). See text for further specific component
details. [Adapted from [1]]

refrigerator and pulsed fields required special designs to minimize heat load and fit in

compact environments, all TDR circuits followed a similar design. A typical TDR setup

operates at low temperatures with the circuit temperature stabilized, typically around

5 K, to minimize noise and drift. Temperature instabilities on the order of mK are

sufficient to cause noticeable fluctuations in the resonant frequency. Therefore, precise

temperature control of the circuit is extremely crucial for precision measurements.

To achieve this stability, most experimental setups are designed with several ther-

mally decoupled stages. For example, a conventional 4He cryostat operates within a

temperature range from 1.5-100 K. A sample is mounted at the end of a sapphire rod

which is delicately designed to slide into a thermally isolated pickup coil without making

contact. The other end of the sapphire rod is mounted in a copper block with a ther-

mometer and heater to control temperature. The sample experiences a weak thermal

link with the 4He “1 K pot,” such that the link is strong enough to cool the sample

yet weak enough to control the sample temperature with a 50 Ω resistor. The circuit is

then rigidly mounted with good thermal coupling to a strong cooling source. The entire
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apparatus is isolated within a vacuum can and evacuated to a typical pressure of 10−5

- 10−6 Torr. This pressure, combined with careful construction to thermally isolate the

circuit from the sample, allows separate and precise control of the circuit and sample.

Mixer 
Filter/ 
Amp 

Mixer 

Oscilloscope 
Local 

Oscillator 

rf Amp 

To TDR 

Figure 2.4: Basic external hardware configuration for a TDR setup consisting of common
RF components. See text for further details. [Adapted from [1]]

Typical hardware for a TDR setup is shown in Fig. 2.4. A homemade biasing box

supplies a bias voltage tunable to the optimal region of the tunnel-diode for the TDR

circuit. The 10 nF capacitors and 2 kΩ resistors act as low pass filters shunting frequen-

cies below ≈ 50 MHz. The 1 µF capacitor acts as a high pass filter which shunts the

RF signal to an external amplifier. The output data is then mixed with a local oscillator

fLO using a non-linear frequency mixer, filtered and amplified, then sent to a counter

and oscilloscope. The output of this heterodyned signal is given by df = fLO ± fTDR.

Since ∆f ∝ −χ, by setting the local oscillator frequency above the circuit resonance, an

increase in susceptibility corresponds to an increase in df . In practice fLO is typically set

a few kHz above resonance and the output frequency, measured by a counter, is given by

df = fLO − fTDR. However, in some cases when frequency shifts are really large (pulsed
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fields or large paramagnetic backgrounds) fLO might be set tens of kHz above resonance,

and mixing/filtering may be done several times to decrease noise.

2.2.3 TDR in pulsed magnetic fields

Interest in pulsed magnetic fields span a wide range of research areas. Many physical

properties can be studied using pulsed fields: specific heat, photo-luminescence, magneti-

zation, resistivity, and GHz and MHz conductivity. Work using TDR in pulsed magnetic

fields were conducted in the Agosta Lab at Clark University (up to 45 T), and at the

National High Magnetic Field Lab at Los Alamos National Laboratory (NHMFL LANL;

up to 65 T) at temperatures ranging from 600 mK to 300 K. The system at Clark Univer-

sity and NHMFL were both designed by Chuck Milke, a former student from the Agosta

lab. As such similarities can be seen between the two setups.

The pulsed magnetic fields in this study were created using capacitor bank-driven

resistive magnets. The 65 T magnets at NHMFL LANL used a 1.6 mega-joule capacitor

bank with a maximum voltage of 9.05 kV, maximum capacitance of 32 mF, max resis-

tance of 40 mΩ, and a 25 ms pulse duration with a 8 ms rise time. Since a large amount

of energy is thermally dissipated from the magnet wire, liquid nitrogen was used to cool

the magnets. For a 65 T pulse, up to 1.5 hours is required between successive shots to

allow the magnet to sufficiently cool. While firing the magnets before maximum cooling

is permissible (the temperature of the magnet is monitored by the magnet resistance)

inequivalent magnet conditions have a large effect on the background signal and are the

dominant contribution to inconsistent background subtractions.

The high fields and tight spaces introduce many technical problems for designing

pulsed field cryostats. Inserts were constructed from long (> 1 m long) and thin rods (∼

2.5 cm outer diameter) of a fiber glass/epoxy composite material known as G-10 because

of the materials poor thermal conducting properties. Inserts were placed within a stain-

less steel “fridge” which was submerged in a liquid helium bath for cooling. The diameter
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of the inner magnet bore at both pulsed facilities was 2.5 cm. Since the field greatly

affects the electrical properties of the TDR electronics, it was necessary to distance the

circuit from the sample and coil in the magnet. The circuit at NHMFL was designed in a

RF shielded box which was externally connected to the probe approximately 1 m above

the magnet and operated at room temperature. A pickup coil containing the sample was

coupled to the TDR primary coil via a transformer. Isolating the circuit at Clark Univer-

sity was achieved by placing the unshielded circuit components inside the fridge further

up the G-10 rod, above the magnet, yet still operating at near liquid He temperatures.

The difference between in apparatus designs was a trade off. The configuration at Clark

allowed the circuit to operate at lower temperatures, without the use of a transformer,

resulting in much lower noise compared to the NHMFL configuration. Conversely, the

NHMFL’s robust design reliably operate throughout both up and down sweep cycles.

The difference in circuit stability is apparent when comparing measurements at Clark

(Fig. 3.2) and measurements at NHMFL (Fig. 3.4). In both cases, however, given the

short duration of the pulse and the large noise associated with the TDR designed for

operating in pulsed fields, care was not taken to stabilize the temperature of the circuit.

Due to the large change in magnetic flux inherent to pulsed field experiments, counter-

wound coils were employed to limit the induced electromotive force and reduce the mag-

netoresistive background subtracted from our pulsed field data. The roughly linear back-

ground was observed as a ∼90 kHz shift over a field range of 45 T, compared to the ∼100

Hz shift observed for ground state level crossing in Cr12Cu2 and Cr12Ln4. The need for

such measures was evident at Clark University where triggering the pulsed field would

cause one of the TDR circuits to stop resonating. A pulse magnet with an 8 ms rise time

and a maximum field of H = 45 T would result in an average dH/dt = 5625 T/s. This

results in an emf sufficiently large to push the circuit voltage out of the tunnel-diode’s

optimal negative differential resistance bias region. After reaching the maximum field

the change in flux is much smaller, the circuit would return to a suitable bias voltage
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allowing proper operation during the down sweep.

Coils were made using extremely delicate 48-50 AWG (25 µm) wire to minimize coil

dimensions and maximize filing factor. The painstaking task of winding and mounting

the fragile coils under a microscope was an art in itself. For the powder magnetic

molecule systems, two 8-turn counter wound solenoids were placed side by side with

the sample placed directly in the coils. Upper-critical field measurements of the thin-

plate superconducting SrFe2(As1−xPx)2 (1 mm x 1 mm x 0.1 mm) single crystals were

performed with the sample GE varnished atop a flat counter-wound pancake coil. These

coils were mounted to a rotating insert to obtain angular-dependent measurements for

the field with respect to the crystallographic axes.

Given the cost, energy requirements, and time between successive shots associated

with pulsed field measurements, probes were designed to accommodate multiple samples

per pulse field shot, when possible. At Clark, 2 samples were mounted for each shot.

At NHMFL, four coaxial lines per probe allowed up to 4 samples to be mounted per

cool down measuring two samples per shot. During measurements, each sample was

connected to individual hardware for signal mixing, filtering, and amplifying. In addition,

data collected using two samples per shot showed good agreement with data collected for

individually mounted samples ensuring negligible coupling between coils when multiple

samples were mounted.

2.2.3.1 TDR design for dilution refrigerator

Obtaining continuous temperatures below 0.3 K requires a 3He/4He dilution refrig-

erator (DR), a multi-stage cryogenic refrigerator which takes advantage of the 3He/4He

phase separation below 870 mK. Base temperature is achieved through an endothermic

process of diluting 3He from a concentrated 3He rich phase to a mixed 3He/4He phase.

During circulation a primarily 3He vapor condenses as it passes through a 1K pot. This

condensed liquid is further cooled by a dilute 3He mixture exiting the mixing chamber
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via a series of silver sintered heat exchangers. In the mixing chamber 3He from a near

pure 3He phase transfers through the phase boundary, while absorbing energy, into a

dilute (6.6% 3He, 93.4% 4He) phase. The dilute mixture exits the mixing chamber where

it warms through exchange as it enters the still. In the still 3He separates from the

superfluid 4He, due to a higher partial pressure for 3He. The pressure in the still is kept

low (∼ 10 Pa) which regulates circulation by drawing more 3He from the concentrated

phase to the dilute phase.

The dilution refrigerator measurements in this work were performed on an Oxford

Instruments Kelvinox MX-400 dilution refrigerator. The challenge for designing an ap-

paratus for a DR is limiting the heat load to the mixing chamber. A previously built

TDR apparatus, optimized for measuring superconducting transitions Tc for single crys-

tals in zero field (the T -sweep setup), attained a base temperature of ≈ 20 mK without

applying a bias to the TDR circuit. Once a bias is applied and locks on to resonance the

temperature increases by a modest 10 mK. However, this design was optimized for sin-

gle crystals in zero-fields. This was not suitable for measuring powdered samples which

would contaminate the TDR coil, and the emf generated by sweeping magnetic fields re-

sistively heated the circuit causing (causing temperature instability and increased noise)

and the sample stage (increasing the base temperature). The T -sweep setup minimized

the mixing chamber heat load by mounting the circuit at the still stage where the cooling

power is much greater. The sample mounts directly to the mixing chamber and inserts

into the coil on a sapphire rod, remaining thermally isolated from the coil and circuit.

The He costs and time commitment for dilution refrigeration measurements is con-

siderable. Several days are required to prepare for each cool down, and 2 hours and 20

minutes is required to sweep up to 14 T at the superconducting magnet’s sweep limit 0.1

T/min. This was the motivation behind designing a new sample holder to accommodate

up to 4 samples per cool down, allowing multiple TDR circuits to operate simultane-

ously. When measuring powdered samples it is convenient to pack the sample directly



www.manaraa.com

22

inside the pickup coil. The issue with this design is that the sample and coil must sit

at the same temperature (with a desired base temperature < 100 mK), while the circuit

operates at a much warmer temperature (∼ 2.6 K). Therefore, it is necessary to estab-

lish a strong thermal break between the coil and circuit to minimize the sample’s base

temperature and reduce the heat load to the mixing chamber. Further, measurements

of the empty coil background for the first design attempt resulted in the observation of

a reproducible background which appeared to be quantum oscillations arising from the

copper coil. This was a surprising result at our temperature of approximately 100 mK

and the onset at a low field of only 8 T.
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Figure 2.5: Plot demonstrating the temperature stability of the TDR set up for H-sweep
in a dilution refrigerator. Four circuits were mounted on a copper plate using a 50 Ω
resistor as a heater.

To resolve the thermal heating, 4 circuits were designed in several stages with most of

the components mounted to circuit boards bolted to a copper plate fixed to the bottom

of the mixing chamber using a stainless steal rod which resulted in a weak thermal break.
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This allowed a heater and thermometer mounted to the copper plate to allow an accurate

temperature control of the circuit components. The circuit temperature was set tens of

millikelvin above the the 1 K pot temperature with a temperature fluctuation less than 2

mK (demonstrated in Fig. 2.5). Temperatures were controlled using a Lakeshore Cernox

CX-1030-SD thermometer and 50 Ω heater. The tank capacitor was mounted to the

bottom of the mixing chamber via high resistance wire as a thermal break, and well out

of the center of the field to minimize magnetoresistance and heating from eddy currents

while sweeping the magnetic field. The tank capacitor was connected to the primary

coil using a rigid copper coax. This configuration allowed a thermal break from the

tunnel-diode and resistive components, while ensuring a good thermal link to the mixing

chamber.

Resolving the quantum oscillation issues required using a different coil material with

no magnetic contribution and minimum resistivity. To this end we used phosphor-

bronze wire, commonly used as a low temperature thermometry lead. The resistiv-

ity of phosphor-bronze at dilution refrigerator temperatures is approximately 90 nΩ·m,

compared to approximately 10 nΩ·m for copper. By reducing the values of the circuit

components, a lower power diode could be used, and hence lower bias voltage/current

reducing the heat load for the resonating current: R1 = 220 Ω, R2 = 150 Ω, R3 = 22

Ω, CC = 39 pF, CB = 12 nF, and CT = 100 pF.

The result was a low noise system with an operating base temperature of 100 mK

and an order of magnitude reduction in the field-dependent background.

2.3 Nuclear Magnetic Resonance

Nuclear magnetic resonance has long been realized as a powerful probe for study-

ing physical static and dynamic properties [20, 21]. NMR enables one to characterize

the local electronic and magnetic properties by manipulating the quantum mechanical
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properties of a local atomic nucleus with an rf field. This technique is exploited in the

physical sciences to study novel materials, in chemistry to characterize molecular struc-

tures, in biochemistry to determine 3-dimensional molecular structures, and as an in vivo

imaging technique in medicine. The general principles of NMR will be discussed in the

next section

Resonance occurs when an oscillator is tuned to some natural frequency, for example,

the energy difference between two magnetic energy levels in atomic spectra in an external

magnetic field. This energy difference typically falls in the radio frequency (RF) range for

nuclear spins and microwave frequency (GHz) for electron spins. This resonance process

for nuclear spin moments is the foundation for NMR.

2.3.1 General resonance theory

A great deal of information is encrypted in the internal fields at the atomic nuclei

arising from hyperfine interactions with local electron spins. To unlock this information

one can observe changes in the field and temperature dependent static and dynamic

properties of the nuclear spins. If one considers the total spin angular moment I of a

nucleus, a nuclear magnetic dipole moment µ will be given as

µ = γh̄I, (2.15)

where γ is the gyromagnetic ratio of the nucleus and h̄ is Planck’s constant divided by

2π. The energy of µ in an external magnetic field H0 is given by

H = −µ ·H0. (2.16)

The magnetic spin moment will posses 2I + 1 eigenstates denoted as |mz〉, where mz are

the eigenvalues of Iz for a field H0 applied along the z direction. Rewriting Eqn. (2.16)

in terms of these eigenstates we get the Hamiltonian

H = −γh̄H0Iz. (2.17)
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The external field will Zeeman split these eigenstates with resulting energies

E = −γh̄H0mz mz = I, I − 1, ...,−I. (2.18)

Magnetic dipole transitions are permitted between states with ∆m = ±1. The energy

gap between allowed transitions can be expressed as

∆E = γh̄H0 = h̄ωn, (2.19)

which yields the Larmor frequency for a nuclear spin moment in a magnetic field as

ωn = γnH0. (2.20)

2.3.2 Moments in alternating magnetic fields

The behavior of a magnetic spin moment in a constant external field is described

by the Larmor theorem. The time-dependent behavior obeys the classical equation of

motion in a magnetic field,

dµ

dt
= µ× (γnH0). (2.21)

From this equation the nuclear magnetic moment will precess around the external mag-

netic field. The expectation value of the z-component will remain constant while the x-

and y-components will oscillate sinusoidally with at the Larmor frequency.

If we introduce a linearly oscillating, transverse magnetic field H1(t) = H1(i cosωzt+

j sinωzt) then the equation of motion can be described as

dµ

dt
= γnµ× [H0 + H1(t)]. (2.22)

It is convenient to express Eqn. (2.22) in terms of a rotational reference frame with the

rotational axes x′ and y′ rotating with a constant angular velocity ω about z′ ‖ H0. If

we take H1 to lie along the x′-axis then the time-dependent equation of motion in the

rotating reference frame is expressed as

δµ

δt
= µ× [(γnH0 + ω)ẑ′ + γnH1x̂

′], (2.23)
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with the time derivative given by
δµ
δt

=
dµ
dt

+µ× ω. The term in the square brackets of

Eqn. (2.23) represents an effective field Heff = (H0 + ω/γn)ẑ′ +H1x̂
′.

When ω = −γnH0 (the Larmor frequency) the system is said to be in resonance. The

effective field is simply given by H1 and µ precesses about x′ with a rate ω1 = −γnH1.

By controlling the length and duration of H1 we can manipulate the rotation of µ in to

the yz-plane by some angle θ. We can create a “90◦ pulse” by applying H1 for a duration

τ such that the angle of rotation is θ = π/2 = γnH1τ . If the nuclear spin moment is

oriented along z′ at time t = 0, then after such a pulse µ would be oriented along the

y′-axis. After the pulse this system would then precess in the xy-plane. Similarly, one

can achieve a “180◦ pulse” rotating the nuclear spin moment aligned along z′ towards

−z′ by applying H1 for a duration of 2τ .

2.3.3 Nuclear relaxation

The total magnetization M for a system of N non-interacting spins in a volume V

can be expressed as a summation of individual moments, M = V −1
∑
µi, where the

sum is taken over all N moments. Therefore, the evolution of the nuclear magnetization

could be expressed in a manner similar to Eqn. (2.23). Expressing the magnetization Mi

(i = x, y, z components) yields the phenomenological Bloch equations:

dMx

δt
= γn(MyHz −MzHy)−

Mx

T2

, (2.24)

dMy

δt
= γn(MzHx −MxHz)−

My

T2

, (2.25)

dMz

δt
= γn(MxHy −MyHx)−

Mx −M0

T1

. (2.26)

For the Bloch equations, Hz is given by the longitudinal static field H0, Hx,y is given

by the oscillating transverse field H1, and M0 represents the equilibrium magnetization

along H0. The values T1 and T2 are characteristic NMR relaxation recovery times.

Relaxation time T1 corresponds to the relaxation of the longitudinal magnetization to
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the equilibrium value M0. T1 is commonly known as the spin-lattice relaxation time

as it measures the duration over which nuclear spins exchange energy with the lattice

and return to equilibrium. Often this value is referenced as 1/T1, known as the spin-

lattice relaxation rate. Relaxation time T2, also known as the spin-spin relaxation time,

is characteristic to the time required for the transverse magnetization component Mxy

to dephase due to spin-spin interactions and field inhomogeneity. During spin-lattice

relaxation processes energy is not conserved, while for spin-spin relaxation energy is

conserved.

2.3.4 Spin-lattice relaxation

Spin-lattice relaxation is the mechanism in which the longitudinal magnetization

relaxes from a perturbed orientation to equilibrium. The process requires energy dis-

sipation from the perturbed spin into the lattice (e.g. phonons, conduction electrons).

The source of this relaxation arises from fluctuations of the local magnetic field from

interactions between the nucleus and the local environment.

This process is governed by the probability that a spin will transition between ad-

jacent energy levels. If we consider a simple two state system where Nm is the number

of spins in state m and Nn is the number of spins in state n. Nuclear spins states in

m will have lower energies (ground state), while spins in n will be excited states. The

probability per unit time for inducing a transition are given by Wnm for transitions from

the excited state to ground state and Wmn for transitions from ground state to excited

states. The change of population could then be written in terms of a linear differential

rate equation

dNm

dt
= (NnWnm −NmWmn). (2.27)

This so called “master equation” characterizes population differences following an RF

pulse. The longitudinal magnetization is proportional to the population for each level,

Mz(t) = γN h̄
∑
〈m|Iz|n〉N−(t), (2.28)
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where N− = Nm − Nn is the population difference. The task of solving the nuclear

spin-lattice relaxation rate is therefore reduced to solving the relaxation rate Wmn.

The equilibrium populations for a two state system (spin 1/2) are given by

N0
n

N0
m

= e−γnh̄H0/kT , (2.29)

where γh̄ H0 represents the energy difference between the two states. Using the expres-

sion for the rate equation and the fact that dNm/dt = 0 in the steady-state to obtain an

expression for the transition probabilities,

Wnm

Wmn

=
N0
n

N0
m

= e−γh̄H0/kT . (2.30)

In the high temperature limit, where γh̄H0 � kBT , we obtain an expression for the

spin-lattice relaxation rate

1

T1

=
1

2

∑
m,nWmn(Em − En)2∑

nE
2
n

. (2.31)

This limit assumes the partition function becomes the total number of states. That is

Z = ZT=∞ = (2I + 1)N . This approximation is legitmate in most cases since only a

small number of partake in relaxation, and this treatment for 1/T1 remains valid unless

the energy of a small number of spins is proportional to kBT .

To calculate the relaxation probabilities it is convenient to use first-order time-

dependent perturbation theory, assuming the rf excitation H1(t) is very weak compared

to the Zeeman Hamiltonian (H1(t) � H0). This is called the weak collision limit. The

relaxation rate Wmn is given by the so called Fermi’s golden rule,

Wmn =
2π

h̄
|〈m|H1|n〉|2δ(Em − En − h̄ω). (2.32)

Eqn. (2.32) applies only when the exact energy values of the lattice are known, or at low

temperatures when energy levels can be approximated.

This approach effectively treats the nuclear spins with a common spin-temperature

Ts and the lattice as a heat reservoir with TL. Following a perturbation, the Ts > TL. In
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equilibrium Ts = TL. By treating the spins by a spin-temperature we indirectly account

for spin-spin couplings.

For the case I = 1/2,

1

T1

= W1/2,−1/2 +W−1/2,1/2 = 2W, (2.33)

where Wnm
∼= Wmn ≡ W since |〈m|H1|n〉|2 ≈ |〈n|H1|m〉|2 in Eqn. (2.32). For I > 1/2,

additional terms for the relaxation must be considered to account for the distribution

between energy levels.

2.3.5 Detection methods

A majority of NMR measurements are conducted using a pulsed NMR setup to detect

the NMR signal. This method, which can also be referred to as Fourier transform NMR,

uses an RF pulse to excite the nuclear magnetization. The equilibrium magnetization

Mz = M0 can be rotated from the z-axis into the transverse plane by applying an RF

pulse of frequency ωn for a duration τ such that γH1τ = π/2. Following this π/2 pulse,

the magnetization in the rotating frame will start to dephase due to inhomogeneities in

field at the local nuclei. The field inhomogeneity can arise from the applied field and/or

distributions of the local hyperfine fields. For this reason, high homogeneity magnets

and shimming of the magnetic field are used to increase uniformity of the field.

Following rotation into the transverse plane the magnetization will precess in the

laboratory frame inducing a voltage in the pickup coil. As a result of field inhomogeneity,

the distribution of the local field will cause the precessing magnetic moments to fan out;

some spins will precess faster than the average ωn, while some precess slower. This process

will be observed as a voltage response with the resulting signal envelope called a free

induction decay (FID). The characteristic decay time of this response is given by T ∗2 . It

should be emphasized that T ∗2 is related to the dephasing magnetization in the transverse

plane arising from all sources of inhomogeneity. This is in contrast to T2 arising from the
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irreversible decay of the transverse magnetization arising from characteristic properties

of a sample (1/T ∗2 ∼ 1/T2 + ∆H).

π/2 pulse 

time 

π pulse 

τ2 τ2 

FID 

echo 

y 

z 

M 

(a) (b) (c) (d) (e) (f) 

Figure 2.6: (a) π/2 pulse rotates magnetization into transverse plane. (b) Dephasing of
magnetization arising from field inhomogeneities at spin sites. (c) π pulse rotates spins
about the x-axis mirroring previous spin configuration. Spin echo forms: (d) refocusing
spins, (e) maximum rephasing occurs, (f) spins dephase again.

To minimize the effects of field inhomogeneity, a spin-echo technique is often used in

NMR experiments. This technique is sometimes called a Hahn echo after Erwin Hahn

explained the phenomenon [30]. The process is depicted in Fig. 2.6 ignoring the effects

of longitudinal relaxation. Fig. 2.6 (a) shows the magnetization initially in equilibrium

aligned with the external field. Fig. 2.6 (b) shows the magnetization in the transverse

plane following a 90o (π/2) pulse. The dephasing of the signal, with faster and slower

spins respectively leading and lagging the average spin procession, results in the FID.

Fig. 2.6 (c) shows the effect of a 180o (π) pulse where all components of the magnetization

are rotated about the x axis. The time between the π/2 pulse and π pulse is defined as
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τ2. After the π pulse, slower spins will now lead the average spin moment while faster

spins will trail. Fig. 2.6 (d-f) Shows the refocusing of the spin moments creating what

is called an echo. The echo will occur at a time approximately t = τ2 after the π pulse,

and t = 2τ2 after the initial π/2 pulse. Note that the spin echo is inverted with respect

to the FID.

Measurements of the spin-lattice relaxation require an additional time component to

monitor the recovery of Mz. This process begins with π/2 pulse to initially rotate the

magnetization in to the xy plane such that Mz = 0. This step is often called saturation

with the pulse referred to as a saturation pulse. At time t = τ after the saturation pulse,

the Hahn echo sequence is then used to detect the signal intensity. Varying τ results in a

time dependent spin echo intensity where the recovery of Mz for the simple case I = 1/2

follows as

Mz(t) = M0[1− exp(−τ/T1)], (2.34)

with T1 given by Eqn. (6.6).
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CHAPTER 3. PULSED FIELD STUDIES OF Cr12Cu2

3.1 Introduction

From an experimental perspective Cr12Cu2 offered an interesting and complex system

to validate quantum Monte Carlo (QMC) calculations using an isotropic Heisenberg

Hamiltonian. Specifically, this is a low-symmetry heterometallic system featuring two

different spin values, where characterizing this system required three different exchange

values (2 antiferromagnetic and 1 ferromagnetic) exhibiting a spin triplet ground state.

Studying this system experimentally was of particular interest as the system was expected

to demonstrate a rich field dependent spectra with a saturation field of 80.7 T, within

available experimental pulsed field limits. Furthermore, the use of TDR in pulsed fields

was particularly intriguing as the frequency dependence of pulsed fields allowed us to

observe excited state level crossing which are unobservable in traditional pulsed field

methods, such as DC magnetometers.

Previous studies of the magnetic molecule Cr12Cu2 by the Prozorov group used TDR

to compare the low-energy spectrum with theoretical simulations conducted by Profs.

Luban and Engelhardt [31, 32]. The Cr12Cu2 molecule, see Fig. 3.1, is an hourglass

structure with five-coordinate Cu2+ (SCu = 1/2, gCu = 2.1) ions bridging the ends of two

Cr6 “horseshoes” of Cr3+ (SCr = 3/2, gCr = 1.98) with metallic ions lying in plane. The

full chemical structure for Cr12Cu2 is [N(C2H5)(C3H8)2]2[Cr12Cu2F16(O2CCMe3)26]. The

Cr and Cu ions are bridged by fluoride and carboxylate ligands. Each Cu ion has one

Cr-Cu site with a single carboxylate ligand, while all other Cr-Cr and Cu-Cr sites feature
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two carboxylate ligands yielding inversion symmetry. We will find that this leads to two

distinct exchange pathways for each Cu ion: Cr-Cu and Cu-Cr. This results in 180o

spherical symmetry with magnetically equivalent sites on opposite sides of the molecule.

Figure 3.1: Molecular structure of hourglass shaped Cr12Cu2 structure with metallic ions
lying in plane. Colors: Cr, green; Cu, orange; O, red; F, yellow; C, black.

Generally, at high temperatures (T > J/kB) ions in magnetic molecules behave as

uncorrelated spins whose behavior follows Eqn. (1.8). At low temperatures ions evolve

into a correlated collective spin system, one can obtain field and temperature dependent

information with regard to spin dynamics for an exactly solvable finite system. The

magnetic properties for AFM rings can be well treated using the spin Hamiltonian

H = −2J
N∑
i=1

Si · Si+1 +D

N∑
i=1

S2
i,z + gµBH ·

N∑
i=1

Si. (3.1)

The first term corresponds to the isotropic Heisenberg Hamiltonian for neighboring spins

Si and Si+1 with exchange coupling constant J which can be antiferromagnetic (J < 0)

or ferromagnetic (J > 0). The second term represents uniaxial single-ion anisotropy
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along the easy z-axis (D < 0) for N number of ions. The last term is the field-dependent

Zeeman interaction.

The Cr12Cu2 system was treated as a 1-dimensional chain with magnetic properties

well characterized using the isotropic Heisenberg Hamiltonian in Eqn. (3.1), without the

anisotropic term (D = 0). Since the total spin operators S2 and Sz both commute with

the Hamiltonian, the eigenstates of the spin operators are described by the quantum

numbers S and ms with values ranging from 0 to 19 (12 x 3/2 + 2 x 1/2) and from −S

to S, respectively. The enormous size of the Hilbert space of dimensionality (2S+1)N , for

N particles of spin S, leads to direct diagonalization to be impractical. To overcome this

theoretical hurdle a number of classical and quantum methods are employed [17, 18, 33–

35]. It was determined from QMC calculations that three exchange constants were

necessary for a good fit of the low-field DC magnetic susceptibility χ(T ) = M(H,T )/H.

The exchange constant J1/kB = −7.8 K describes the Cr-Cr interactions, while the

exchange constants J2/kB = −28.6 K and J3/kB = 10.4 K describe the two distinct

Cr-Cu and Cu-Cr pathways.

QMC was used to calculate the low-temperature differential susceptibility, dM/dH,

as a function of external magnetic fields. In zero field the ground state is in a total

spin S = 1 state. Zeeman splitting of the energy levels results in a field-dependent

ground-state with transitions occurring between Si−1 → Si. The level-crossing fields

were determined by QMC with a saturation field of 80.7 T. The field values for the level

crossings in Tesla are: 8.15, 11.9, 16.2, 19.8, 24.1, 27.6, 31.7, 35.15, 39.3, 42.6, 47.1,

50.1, 55.2, 57.65, 64.3, 65.5, and 80.7. Each peak corresponds to an approximately 2 µB

step in the magnetization. Calculating the zero-field energy values from these values is

straight forward. By denoting zero-field energy of a lower-energy multiplet as ES, the

energy gap between successive multiplets is given by ES+1 − ES = gµBHS. It is of no

consequence to shift the ground state energy level to ES=1 = 0, and therefore the one

can determine the entire zero field energy spectrum.
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TDR measurements were conducted in the Prozorov Group’s dilution refrigerator by

sweeping magnetic field, limited up to 14 T, to experimentally determine dM/dH. Two

peaks are observed at lowest temperatures (80 mK - 500 mK) corresponding to steps

in the magnetization as the system transitions from an S = 1 → S = 2 ground state

at 8.1 T, and from an S = 2 → S = 3 ground state at 11.9 T. These experimentally

determined field values for the level crossings are in excellent agreement with the first

two fields determined by QMC. Upon increasing temperature, additional peaks become

progressively visible with a rich spectrum at 2.5 K. These states arise as the increased

thermal energy allows for the population of excited spin states within an energy range

kBT of the ground state. In Fig. 4 of [31], peaks for excited transitions are shown to be

in good qualitative agreement with theoretically predicted field values.

The excellent agreement observed for theoretical QMC calculations and TDO dM/dH

measurements validate the treatment of Cr12Cu2 as strictly isotropic Heisenberg sys-

tem with negligible intermolecular magnetic interactions, and the use of TDR as a low-

temperature probe of quantum spin systems at low energies (fields). The pulsed field

facilities of Clark University and the National High Magnetic Field Lab at Los Alamos

National Laboratory (NHMFL LANL) offered the opportunity to validate higher field

level-crossings. Further, the 100 T system at NHMFL offered an experimental setup to

confirm the predicted values up to saturation of the magnetic spin moments.

3.2 Results and discussions

For pulsed field measurements, samples were packed directly in to the counter-wound

pickup coils. Measurements at Clark used coils lined with Teflon tape so the same coil

could be used for multiple measurements without contamination, while at NHMFL a

new coil was wound for each sample. In both cases the powder samples were mixed with

small quantities (∼ 10% by mass) of diamagentic Apiezon N Grease to ensure uniform
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cooling of the poor thermal conducting powder samples.

Fig. 3.2 and Fig. 3.4 show the pulsed field TDR data, after background subtraction,

collected during the downs sweep at Clark University (T = 570 mK and T = 2.5 K; up to

H = 45 T) and NHMFL (T = 600 mK; up to H = 65 T), respectively. The background

was subtracted using a background curve determined using a fifth-order polynomial fit

to the approximately linear background regions between level crossing peaks, where

the background regions were determined from the first-derivative of the experimental

data. The difference between resolution is obvious upon initial inspection for reasons

discussed in chapter 2. At T ≈ 600 mK, both figures clearly observe several peaks

which tend to form in pairs (doublets). Applied fields lift the (2S + 1)-fold degeneracy

of the zero-field energy levels such that crossings between energy levels occur. This

is due to a gµBmsH shift originating from the Zeeman term. Therefore, these peaks

correspond to changes in dM/dH as a result of transitions between H-dependent ground

state level-crossings. Specifically, observed transitions correspond to changes between

quantum states by increasing the total spin quantum number S by one unit. For example

(S,mS) => (1,−1) → (2,−2), or more generally (S,ms = −S) → (S + 1,ms = −|S +

1|). For higher fields, the separation between two peaks forming a doublet decreases,

becoming hard to distinguish two peaks in the case of NHMFL data. Fig. 3.3 shows

the field dependence of the Zeeman splitting for the eleven lowest (S,mS = −S) energy

levels.

The 2.5 K data from Clark shows a rich spectrum of peaks corresponding to excited

state level crossings. In order to observe these peaks there must be a sufficiently large

thermal energy to thermally populate excited states, i.e. kBT > ∆, where ∆ is the en-

ergy gap between the ground state and excited state. These features are not observable

in static DC SQUID measurements and require measurements of the dynamic suscepti-

bility using, for example, TDR. Many of these transitions are of ∆S = 2, in violation

of the selection rules. In order to reconcile this one must add a weak anisotropic contri-
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Figure 3.2: Pulsed field TDR measurements from the down sweep in fields up to 45 T. The
black curve (top curve) corresponds to measurements at T = 570 mK. Peaks indicate
transitions between ground state level crossings between Si−1 → Si. The red curve
(lower curve) was measured at 2.5 K. The rich spectrum of peaks arises from transitions
involving excited states where the thermal energy sufficiently populates excited energy
levels.

bution from non-Heisenberg terms to the Hamiltonian to allow such transitions. These

anisotropic contributions give rise to a small energy gap δ (i.e. avoided level crossings)

when two levels would otherwise cross. The frequency of the TDR must satisfy the in-

equality 2πh̄f0 > δ, putting an upper limit of ≈ 0.8 mK on the size of these energy gaps

for TDR frequency f0 ≈ 15 MHz.

The peaks in Fig. 3.4 were fit with Gaussian curves using the “Multi-peak Fitting”

program included in Igor Pro 6.22 graphical analysis software. This software uses a

Savitzky-Golay smoothing filter to perform a polynomial regression fit for the data.

Fig. 3.5 compares the field values of the level-crossing peak positions vs transition i for
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Figure 3.3: Zeeman split energy level diagram including (S,−ms) levels, corresponding
to the left axis where the zero-field ground state equals zero. Crossing of energy levels
correspond to ground state level crossings. The 45 T pulsed field data from Clark is
included to emphasize agreement, corresponding to the right axis.

the 65 T NHMFL data (black circles) and the theoretically calculated values from QMC

(red crosses), where i corresponds to transitions from total spin state Si−1 → Si. The

agreement was remarkably good, typically within 1 T. It is noted that the fitting method

was unable to distinguish a doublet peak near 48 T, corresponding so i = 12 and 13, and

thus a single peak is reported in Fig. 3.3 for i = 12. Level crossing field data from Clark

was not plotted for clarity, however, it should be noted that peaks through i = 11 were

typically within 0.5 T agreement with the calculated values.

The dM/dH data from Clark was fit using a similar process as described above to

further understand TDR as a spectroscopic tool in pulsed fields. Fig. 3.6 shows the

results of this analysis. The first observed parameter is the field separation between
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Figure 3.4: Pulsed field TDR spectrum from the down sweep of a 65 T pulse measured
at NHMFL LANL. The noise, compared to the pulse field data from Clark, is due to
a different TDR setup. The increase in noise is a trade off for a more robust circuit
designed for operating in the presence of high electromotive forces.

successive peaks, ∆H, in units of Tesla. Next parameter is the peaks full width at half

amplitude (FWHA), in units of Tesla. Last, the area of each peak plotted in arbitrary

units.

While the linear behavior for the level crossing field vs transition i is linear, the

peak to peak separation is more complicated. The systems stays in a total spin S = 1

ground state in applied fields 0 ≤ H ≤ 8.23 T (0.48 meV). The field required for this

first transition between S = 1 → S = 2 is much larger than for subsequent transitions,

by approximately 1.6 times. After this first transition the peak separation alternates

between 3 T (0.17 meV) and 5 T (0.29 meV) arising from the doublet structure. What

is interesting is that although the peak to peak separation within each doublet decreases
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Figure 3.5: Plot demonstrates the agreement between theoretically predict level crossings
and level crossings determined pulsed magnetic field measurements at LANL. Fitting
of the peaks were unable to identify two peaks for S = 12, 13. Level crossings for
measurements from Clark were also in good agreement but excluded for clarity.

for higher Si (from 3.27 T between S = 2→ S = 3 to 2.24 T between S = 10→ S = 11)

the separation from doublet to doublet remains almost constant (4.7 T to 4.9 T) when

measured as the separation from the second peak of a doublet to the first peak of the

next successive doublet.

The theoretically calculated peak to peak separations show the same behavior, al-

ternating between 3 T and 4.3 T in the same range. The peak to peak separation for

the last three calculated transitions are 6.7 T, 1.2 T, then a large separation to 15.2 T

at saturation (where S goes from 17 → 19). Therefore large energy gaps exist before

the first excited state and before reaching saturation, with alternating sized potential

barriers in between. This suggests even values for the total spin state are energetically

less favorable then odd values. A similar behavior is observed for Cr10Cu2 with an S = 0
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Figure 3.6: Plot of the peak area, FWHA (T), and field separation between peaks ∆H
(T) for the first 10 ground state level crossings determined from the 45 T Clark pulsed
field data.

ground state, however, only a small gap is observed for S = 0→ S = 1 and even values

for the total spin state are more stable with a larger separation between S = 2→ S = 3

[31].

In addition to the peak to peak separation the FWHA and area were also analyzed.

Somewhat unexpectedly the FWHA remained constant while the area decreased upon

transitioning to higher spin ground states. The peak area is calculated with dimension

frequency × Tesla and reported in arbitrary units. Since shifts in frequency for TDR

are proportional to dM/dH, the total area under the peak should represent the change

in magnetization which should be a constant 2 µB/step. However, the decreasing peak

area indicates a non-linear response as a function of field.

Other possible origins for the non-linear response could include the process for sub-
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tracting background, and the time-dependent shape of the pulse field. The background

subtraction process is straightforward at high fields where the only contribution to the

background arises from a near-linear magneto-resistive term. This region can be well fit

by a fifth order polynomial leaving only the peaks in dM/dH. Subtracting from lower

fields is more tricky where the background is non-linear. This could give rise to over

or underestimating the peak amplitude. However, for this explanation to make sense I

would expect the peak area to be almost constant for higher fields which is not the case.

The non-linear response could then be a consequence of the pulse shape where the field

sweeps faster at high fields than low fields as expected for the decay of an LC circuit.

This could possibly explain the peak area and constant FWHA, but it would require spin

transitions to take place on time scales slower than the field sweep rate, which is orders

of milliseconds.

3.3 Conclusions

This study represents the first use of TDR in pulsed magnetic fields for detecting

quantum spin transitions in magnetic molecules. Further, Cr12Cu2 offered a system to

test the legitimacy of QMC calculations using a purely isotropic Hamiltonian. This

fact may be surprising given a small anisotropy is necessary for observing excited state

level crossings. While the ambitious intention for this work was to validate the theory

up to saturation in a field H = 80.7 T on the 100 T magnet at NHMFL, time and

magnet availability restrictions limited us to the first 15 of 17 predicted peaks. Treating

Cr12Cu2 with three exchange constants accurately predicts a triplet ground state. The

most significant result of this study is the remarkable agreement between theoretically

calculated and experimentally determined field values for the ground state (and excited

state) level crossings using TDR in pulsed fields. From these measurements it is clear that

TDR is a powerful tool for observing the dynamic magnetic susceptibility of magnetic
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molecules in pulsed fields.
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CHAPTER 4. STUDIES OF MOLECULAR MAGNET

Cr12Ln4

4.1 Introduction

The extension of adding 4f orbital Lanthenide (Ln = Y, Eu, Gd, Tb, Dy, Ho, Er,

and Tb in this study) elements was an obvious progression for magnetic molecules, where

most magnetic molecules previously focused on 3d orbital metals (M = V, Cr, Mn, Fe,

Ni, Cu) [36]. For a physicist the interest lies in the magnetic nature of inner shell valence

f orbitals and the nature of the 3d-4f interactions. The majority of Ln3+ ions have

orbitally degenerate ground states split by spin-orbit coupling and crystal field effects.

Since spin-orbit coupling is much larger for 4f electrons compared to 3d electrons, and

crystal field effects much smaller, therefore orbital angular momentum is more important

for determining magnetic behavior in rare earth ions than transition metals. This is a

result of the the partially filled 4f shells lying inside the 5s and 5p shells. Further, this

internal electronic shell structure is expected to give rise to weak magnetic interactions

between Ln-Ln and Ln-Cr ions.

The total angular momentum, total electron spin, and orbital angular momentum for

rare earths Y3+ (J = S = L = 0) and ground state for Eu3+ (J = 0 and S = L) results

in a diamagnetic ground state. Gd provides an interesting comparison with 3d systems

as the orbital angular momentum is quenched, L = 0, and the total angular momentum

is given by the total electron spin, J = S. For the remaining rare earth systems J, L, and

S are non-zero. The values of J, L, and S are given using the traditional ground state
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Table 4.1: J, L, S, and gJ Values for Select Triply Ionized Rare Earths

Ground
Element State gJ

Gd 8S7/2 2
Tb 7F6 3/2
Dy 6H15/2 4/3
Ho 5I8 5/4
Er 4I15/2 6/5
Yb 2F7/2 8/7

notation, (2S+1)LJ , in Table 4.1. In this notation L = S, P,D, F,G,H, and I correspond

to orbital angular momentum values of L = 0, 1, 2, 3, 4, 5, and 6, respectively [37, 38].

A critical consequence of compounds with orbitally degenerate 4f ions, L 6= 0, is they

can not be treated with simple isotropic spin Hamiltonians as used for transition metal

compounds due to anisotropy arising from the orbital angular momentum.

Figure 4.1: (Color online) Structure for Cr12Ln4. Tetrahedral structure for Ln ions leads
to 98.4o between planes of the two Cr horseshoes. Colors: Cr, green; Ln, purple; O, red;
F, yellow; N, blue, C, black.

The possibility of binding RE ions to Cr6 structures presented an open question

chemically. Given the monovalency and high electronegativity for fluorides bridging
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Cr-Cr sites, it was uncertain whether the fluorides bind with sufficient strength to al-

low Ln ions to bind to ligands at Cr sites, rather than forming LnF3 salts [39]. As-

sembly of the Cr12Ln4 structure begins with a pair of Cr6 horseshoes, {Cr6}2, whose

general formula is [(Et2NH2)3{Cr6F11(O2CtBu)10)}]2, with three terminal fluoride lig-

ands at the end of each terminal chromium site. The general formula for Cr12Ln4 is

[(Et2NH2)2{Cr12Ln4F21(O2CtBu)29}] with the corresponding structure shown in Fig. 4.1.

The molecule consists of two {Cr6} horseshoes connected by a distorted tetrahedron of

Ln ions with each Ln ion bridging a different terminus of the Cr horseshoe. This results

in a near orthogonal 98.4o between mean planes of the two {Cr6} horseshoes yielding a

non-crystallographic 2-fold C2v symmetry. In both structures the Cr-Cr, and Cr-Ln sites

for Cr12Ln4, are bridged by a single fluoride and two pivalate groups. This structure

allows for magnetic exchange between Cr-Cr sites, Cr-Ln sites, and Ln-Ln sites [39]. Ini-

tial efforts to grow Cr12Ln4 compounds with light rare earths (La, Ce, Pr, Nd, Pm, and

Sm) were unsuccessful with the only synthesized structure being a heptametallic ring

of six Cr ions and one Ce ion [40]. Sample synthesis and magnetization measurements

were conducted by the Winpenny group in the Department of Chemistry, University of

Manchester. All measurements were on powder samples and pulsed field measurements

were conducted with the sample placed directly inside the coil.

Magnetic properties of rare earths are well known to be dominated by the inner shell

4f orbitals. Spin-orbit coupling of the trivalent ions splits the 2S+1L multiplets in to J

states of energy

E(2S+1LJ) = (λ/2)[J(J + 1)− L(L+ 1)− S(S + 1)], (4.1)

with J = |L−S| for light rare earths and J = L+S for the rare earths in this study (Gd

- Yb). λ gives the strength of the spin-orbit coupling in units of energy. The g factor of

a given J multiplet is given by (see Table 4.1)

gJ =
3

2
+
S(S + 1)− L(L+ 1)

J(J + 1)
. (4.2)
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Generally, the lowest lying J multiplet lies well below excited states. The values calcu-

lated for χT in Table 4.2 are given by the usual form

χT =
NA(gJµB)2

3kB
J(J + 1), (4.3)

where J is the total angular momentum. Deviations from Curie’s law for coupled rare

earth and transition metal ions can arise from the single-ion effect of the rare earth ion

or Curie-Weiss behavior.

4.2 DC magnetization

Fig. 4.2 (a) shows the DC magnetic susceptibility χ taken in an external field of

H = 0.1 T for the family Cr12Ln4 (Ln = Y, Eu, Gd, Tb, Dy, Ho, Er, and Tb). For

convenience samples will be identified by the corresponding rare earth ion (i.e. the “Gd

sample”) and “{Cr6}2” corresponding to two Ln-free horseshoes. The inset shows a

near identical behavior above approximately 100 K corresponding to all magnetic ions

in the paramagnetic region. Below 100 K systems with samples containing magnetic

rare earths show an increase in χ as T goes to zero, exhibiting Curie-like behavior. For

{Cr6}2, Y, and Eu samples, χ approaches zero as T goes to zero offering definitive proof

of antiferromagnetic interactions between Cr-Cr ions as observed in previous Cr chains

and rings [31, 41, 42].

A plot of χT is shown in Fig. 4.2 (b). The value of χT as T goes to zero, is proportional

to the ground state for the total angular momentum, as seen in Eqn. (4.3). Since χT → 0

as T goes to zero for {Cr6}2, Y, and Eu provides direct evidence of a S = 0 spin singlet

ground state. While systems containing magnetic Ln ions sharply decrease for χT below

50 K, it is not possible to determine the ground state from this data (for closer inspection,

a plot of χT below 20 K is provided in Fig. 4.4 (b) after subtracting the χT contribution

for Cr12Y4). Above 100 K, χT for Eu (and possibly Tb) continues to increase, rather than

saturate. For Eu, this is readily observed upon comparison with χT plots for {Cr6}2 and
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Figure 4.2: (Color online) (a) DC magnetic susceptibility χ at H = 0.1 T. Systems ex-
hibiting upward Curie-Weiss behavior at low temperature correspond to systems with
magnetic Ln ions. The three curves trending towards zero correspond to systems with
non-magnetic Ln ions. The inset shows the DC susceptibility over the entire temper-
ature range. (b) Plot of χT versus temperature. The values of χT (T = 0) is directly
proportional to the total spin ground state.

Cr12Yb4. This behavior likely arises from a low lying J-multiplet just above the ground

state such that excitations into higher J levels can be appreciable at room temperature. I

make a special note that the earliest publication I could find regarding such behavior for

Eu3+ was reported by Frank Spedding in 1940, while working at what was then named

Iowa State College [43].

Fig. 4.3 shows magnetization as a function of field at a constant temperature T =

2 K. The {Cr6}2, Y, and Eu samples show only a small linear increase as the external

field increases while the magnetic Ln systems show an abrupt Brillouin-like increase in

magnetization for H 6= 0.

The near identical behavior in Fig. 4.2 and Fig. 4.3 for {Cr6}2 and the diamagnetic

Y sample suggest very similar magnetic behavior arising from the Cr ions upon assembly
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Figure 4.3: (Color online) M(H) measurements conducted in DC SQUID at T = 2 K.

into the Cr12Ln4 structure. Further, the plots of χ, χT , and M(H) indicate the Ln

ions behave as nearly paramagnetic, weakly-interacting systems. Therefore, in order to

further understand the behavior of the {Ln4} tetrahedra contributions for Cr12Y4 were

subtracted from χ, χT , and M(H) for systems with magnetic Ln ions. These reduced

values are identified with an asterisk (e.g. χ∗ in Fig. 4.4). Cr12Y4 with non-magnetic

Y3+ ion was choosen over the Eu sample to avoid issues arising from excited J-orbitals at

high temperatures. Further, the similar structures of the assembled the Cr12Y4 system

and the remaining Cr12Ln4 systems was the primary motivation behind using data for

the Y system rather than the {Cr6}2 horseshoes. However, it is noted that the difference

between the {Cr6}2 data and Y data is quite small: ∆χT (300 K) = 0.3 K · cm3/mol and

∆M(7 T) = 0.3 µB/molecule. By making this approximation it is assumed the exchange

constants between Cr-Ln ions are very weak, as expected for interactions involving 4f
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ions [36, 44–49].
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Figure 4.4: (Color online) a) Plot of χ∗ for systems with magnetic Ln ions after subtract-
ing the contribution from Cr12Y4. It is presumed this contribution arises from the four
weakly interacting 4f Ln ions. The solid lines correspond to Curie-Weiss fits for T <
100 K as described in the text. b) Low temperature plot of χ∗T versus temperature.

Fig. 4.4 (a) shows the reduced magnetic susceptibility χ∗ for the six magnetic Ln

systems below 30 K. The data were analyzed using a Curie-Weiss fit, Eqn. (1.10), in

the temperature range 2 K < T < 100 K. The results of these fits are included in

Table 4.2. The values observed for Curie constant Cexp are only slightly lower than

the theoretical values for corresponding non-interacting ions (see χTcalc in Table 4.2).

The experimentally determined Weiss temperatures Θexp are also reported. All systems

exhibit a negative Weiss temperature suggesting a very weak AFM interaction associated

with Ln-Cr interactions, ranging from Θ = −0.37 K to -1.71 K for the Yb and Tb samples,

respectively. This is in contrast to other complexes containing lanthenide and transition

metal ions, where the Ln-TM exchange interactions are either ferromagnetic or too weak

to determine [36, 44–49].
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Table 4.2: Curie Weiss Data

Ccalc Cexp χ∗T(300 K)
Element (cm3·K/mol) (cm3·K/mol/Ln) Θexp(K) (cm3·K/mol/Ln)

Gd 7.88 7.74 -0.78 8.15
Tb 11.82 9.50 -1.71 13.22
Dy 14.17 11.88 -1.02 14.38
Ho 14.07 11.53 -1.17 13.85
Er 11.48 8.25 -1.23 11.12
Yb 2.57 1.37 -0.37 2.43

Calculated Curie values for triply ionized Ln ions. Experimental values determined from
a Curie-Weiss fit of χ∗ or χT ∗(300 K) after subtracting the magnetic susceptibility con-
tribution from Cr12Ln4.

Fig. 4.4 (b) plots the reduced susceptibility as χ∗T in the low temperature region.

At sufficiently high temperatures a plot of χT will become constant arising from the

paramagnetic behavior, χT = C, where C is Curie’s constant. All of the systems are

near saturation at room temperature with the values of χ∗T (300 K) for the magnetic

Ln ions listed in Table 4.2. The values are all in good agreement with the calculated

values for χT . It is also interesting to note here that the Gd sample, with L = 0,

approaches saturation much more rapidly, reaching 90% of saturation by 16 K, compared

to approximately 65 K for Dy and Ho, 75 K for Er, and 160 K for Yb.

Further analysis of the low temperature region of χ∗T in Fig. 4.4 makes determining

the ground state for the magnetic Ln ions difficult. Again, the {Cr6}2, Y, and Eu

showed a clear trend towards zero at low temperatures. Most of the Ln systems show

the onset of a sharp downward trend towards zero below 5 K. However, the Yb sample,

with the smallest Weiss temperature of Θ = -0.37 K, observes almost no decrease at low

temperatures. Extrapolating this curve to T = 0 K, results in χT ∗ =4.5 cm3·K/mol/Ln,

approximately half the calculated value of 10.28 cm3·K/mol/Ln. To accurately determine

the spin value of the ground state, a lower temperature DC measurement is required.

However, these results suggest that a high spin ground state is plausible.
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Figure 4.5: (Color online) M(H) for systems with magnetic Ln ions after subtracting
the contribution from Cr12Y4. The remaining contribution arises from paramagnetic Ln
ions. The lines correspond to fits using a Brillouin function as described in the text.

The reduced magnetization is plotted in Fig. 4.5 after subtracting M(H) for Cr12Y4.

The solid line in the data corresponds to a fit using the Brillouin function as expressed

in Eqn. (1.6) and Eqn. (1.7). The magnetic contribution in this reduced scheme arises

entirely from the four Ln ions. Therefore, the saturation value for the magnetization

as a function of field should be proportional to the g-factor multiplied by the total

angular momentum as gJJ . The theoretically calculated values and values as determine

for M∗(H = 7 T) can be found in Table 4.3. Upon inspection, it is peculiar that

the Gd sample would show the largest saturation despite the second lowest expected

moment. Analysis for M∗(H = 7 T) demonstrates good agreement for the Gd sample

(gJJ |exp = 6.8 compared to a calculated value gJJ |cal = 7) where the orbital angular

momentum is quenched, L = 0 . For the remaining samples with L 6= 0 (Tb, Dy,

Ho, Er, and Yb), the experimentally determined values of gJJ from the magnetization

at T = 2 K and H = 7 T are approximately 1/2 of the theoretically expected values
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Table 4.3: M(H) Data

gJJ gJJ(7 T)
Element (calculated) (experiment)

Gd 7 6.8
Tb 9 4.6
Dy 10 5.4
Ho 10 5.5
Er 9 4.8
Yb 4 1.8

Values of gJJ calculated for triply ionized Ln ions
and determined from M(H = 7 T) after subtracting
contribution from Cr12Ln4.

determined by Hund’s rules. This would correspond to a rotation of the total angular

momentum by ≈ 60o away from the applied field axis, independent of the magnitude of

L. This suggests that a non-zero orbital angular momentum gives rise to large anisotropy

arising crystal field or single ion effects. Similar Ising-like anisotropic behavior has been

observed for intermetallic systems featuring Ln ions exhibiting AFM ordering between

moment-bearing members [12–14]. For the Gd sample, on the other hand, the Gd ions

act as model Heisenberg moments.

To summarize the DC magnetization data, plots of the low-field susceptibility and

T -dependent magnetization demonstrate very similar behavior for the systems with no

magnetic Ln ions present, with a S = 0 ground state. Magnetic properties for systems

with magnetic Ln ions can be treated as a superpostion of properties from the Ln4

tetrahedra and the {Cr6}2 horseshoes. The T -dependent susceptibility demonstrates

good agreement between experimental values for χT and the calculated Curie values

from four paramagnetic ions at high temperatures. At low temperatures, contributions

from the Ln4 ions demonstrate a Curie-Weiss behavior with a weak AFM interaction

determined by the Weiss temperature. The magnetization data at 2 K shows a linear

increase in M(H) for the non-magnetic systems in fields up to 7 T. On the other hand,
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systems with magnetic Ln ions saturation exhibiting a Brillouin like behavior. While the

magnitude for the orbitally quenched Gd sample agrees with the calculated values for

four non-interacting triply-ionized Gd ions as determined by Hund’s rules, the systems

with orbital angular moment L 6= 0 saturate at 1/2 the expected value. This suggests the

orbital contributions introduce a considerable anisotropy which reduces the z-component

of the total angular momentum in an applied field at low temperatures, likely arising

from crystal field effects or single-ion effects.

4.3 Dynamic susceptibility in pulsed fields

Pulsed field measurements were conducted in Chuck Agosta’s pulsed magnetic field

lab at Clark University following the same procedure as discussed for Cr12Cu2. Two

different circuits measured simultaneously for each pulse with resonance frequencies f1

= 24.39 MHz and f2 = 29.62 MHz for circuits 1 and 2, respectively. Samples measured

in circuit 1 include Dy, Ho, {Cr6}2, and Gd; samples measured in circuit 2 include Tb,

Yb, Y, and Eu. Note that an Er sample was not available for pulsed field measurements.

Fig. 4.6 shows dM/dH for the Cr12Ln4 family, at T = 600 mK and in fields up to 45 T,

after subtracting the background for the empty coils.

The initial field dependence below ≈ 2 T likely arises from the paramagnetic con-

tributions of the Ln ions. As such the {Cr6}2, Y, and Eu samples show almost no

dM/dH-dependence at low fields, while the samples containing magnetic Ln ions show

a decrease in dM/dH roughly proportional to the total angular momentum of the re-

spective Ln ion. A precise analysis of this region was avoided since the task of precisely

measuring the amount of sample successfully placed within the coil would have been ex-

tremely time intensive, and therefore impractical given the limited available pulse time.

Above 2 T, peaks are observed in the susceptibility corresponding to level crossings be-

tween the H-dependent energy levels. At these fields, the paramagnetic Ln ions are



www.manaraa.com

55

saturated and dM/dH = 0 is expected between level crossing peaks. The approximately

linear H-dependent background observed for the {Cr6}2, Dy, and Ho samples likely arise

due to a poor empty coil measurement for circuit 1.

In the inset of Fig. 4.6 below 1.5 T, the Tb sample (and possibly Dy) shows a large

doublet peak in dM/dH near H = 0.6 T in the paramagnetic region, almost 2.5 times

larger than the next largest peak. The feature is not reflected in the DC magnetization,

however, the temperature for that measurement is much higher. While the origin of this

peak is not clear at this time it is possible this corresponds to a step in the magnetization

arising from Tb-Tb, or more likely Tb-Cr interactions noting that, from Table 4.2, the

Tb sample shows a much larger Weiss temperature than the other Ln samples. A temper-

ature of 600 mK might be a sufficiently low thermal energy to observe exchange coupling

between Tb-Tb or Tb-Cr, but high enough that the remaining Ln systems behave as

paramagnetic ions.

A plot of dM/dH for the pulse field data after subtracting the paramagnetic back-

ground is shown in Fig. 4.7 at temperatures of 600 mK and 2.5 K. Subtracting the

background contribution for fields below 1 T can be difficult due to the large param-

agnetic contributions and low-field dependence to magneto-resistance of coil and field

dependence of resonator capacitance. In Fig. 4.7 (a) above 1 T, {Cr6}2 features six well

defined peaks corresponding to ground state level crossings with ∆S = 1, and a small

bump near 5 T likely arising from an excited level crossing. The position of these peaks

are, in Tesla: 2.9, 7.8, 15.6, 23.3, 30.3, 36.0, 38.0. The remaining systems observe only

five peaks with some showing the onset of a sixth peak at the upper pulse limit. The

presence of the non-magnetic Y and Eu Ln ions increases the field value for each level

crossing, which becomes more dramatic at higher fields. For example, the peak position

of the first peak and fifth peak for the Y and Eu samples are at 3.5 T and 36.0 T,

compared to 2.9 T and 30.3 T {Cr6}2, respectively. The addition of a magnetic Ln ion

indiscriminately pushes these level crossing fields slightly higher, with the first peak near
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4 T, independent of Ln. This suggests that changing the rare earth ions can not be used

to systematically manipulate the zero field energies in these magnetic molecule systems.

This is likely a result of the exchange interactions for Cr-Ln sites are much weaker than

the Cr-Cr sites. Fig. 4.7 (b) demonstrates the high resolution for which TDR can de-

tect a rich spectrum of ground state and excited state level crossings in pulsed fields.

Note the positions of many excited state level crossings are located directly in between

ground state level crossings. These excited state level crossings arise from transitions

with ∆S = 2.

Fig. 4.8 shows the thermal evolution for the Y and Gd samples measured using a

14 T superconducting magnet with a slow sweep rate of 0.1 T/min. Below 700 mK,

the Y sample features two peaks in dM/dH at H = 3.5 T and 9.6 T, while the Gd

sample shows two doublet peaks shifted to slightly higher fields . The Gd peaks appear

at slightly higher fields with the first doublet at H = 4.4 T and 5.6 T, and the second

doublet at 10.1 T and 11.3 T. The doublet peak for the Gd sample are seen in both DC

fields and pulsed fields for both ground and excited level crossings. In the pulsed field

data, separation between peaks within a doublet decrease for level crossings at higher

fields until only one peak is detected, similar to the behavior observed for Cr10Cu2 and

Cr12Cu2 [31, 42]. Unfortunately there is no clear explanation for why this doublet feature

is observed for only the L = 0 Gd sample.

4.4 Theoretical fits

Numerical calculations were performed in order to determine the Cr-Cr exchange cou-

pling constants for {Cr6}2, as done in Cr12Cu2 using QMC. Simulations were conducted

using a program called FIT-MART (“Fully Integrated Tool for Magnetic Analysis in Re-

search & Teaching”), developed by Larry Engelhardt at Francis Marion University, which

simulates relevant physical parameters (χ, M(H), etc.) by direct numerical diagonaliza-
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tion of spin matrix (dimension = (2S + 1)N = 4096) using a Heisenberg Hamiltonian.

For small systems, these calculations are simple enough that they can be performed on

a typical desktop computer. While {Cr6}2 is a rather simple system (calculations took

several seconds to complete), a Cr8 ring system will begin to push the limits/patience of

the typical computer/user.

A minimum of two exchange constants were necessary to reproduce the peak at 5

K and shoulder near 20 K in the DC susceptibility, as show in Fig. 4.9. The best fit

was obtained with J1 = -8.55 K for the three inner Cr-Cr exchange paths and J2 =

-6.65 K corresponding to exchange paths at the two edge cites (see lower left inset in

Fig. 4.9 (a)), for SCr = 3/2, gCr = 1.98. It should be noted that adding an additional

exchange parameter to couple the two edge sites, even with small values, drastically

led to poor agreement with the experimental susceptibility It is also important to note

that reasonable fits are still obtainable when J1 and J2 differ by as much as ±0.2K.

Systematically changing values for J1 and J2 it was quickly observed that increasing

exchange values suppressed and broadened the susceptibility, while pushing the peak to

higher temperatures. Using a −2Jsn ·sn+1 Heisenberg representation, AFM rings typical

exhibit a peak in the susceptibility in the area of J ′.

The energy diagram calculated for the 4096 spin states is plotted in Fig. 4.10 showing

a discrete spectrum for the lowest lying energy levels. There is a small energy gap (4 K,

0.345 meV) separating the total spin S = 0 grounds state from the S = 1 first excited

state. The lowest lying energy levels for each spin states, commonly referred to as the

L-band, follows Landé’s interval rule where ES ∝ S(S+1) represented by the solid black

line. It can be seen from this energy level diagram that at low temperature the system

will characterized by a discrete spectrum of energy levels with spins occupying only a

few quantum states. At intermediate temperatures the number of occupied states will

be best represented as a continuous spectrum of energy states and can be theoretically

treated by classical approximations. This property of magnetic molecules offers a system
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to experimentally study the transition from classical to quantum statistics.

Fig. 4.11 compares dM/dH for the pulsed field data and the FITMART simulations.

Using the values noted above, a poor fit was obtain for dM/dH despite the quality

agreement achieved for the DC susceptibility. The first calculated peak at H = 3.0 T

is in good agreement with the experimental data with a peak position at H = 2.92 T,

suggesting that the peak observed below 1 T results from poor background and low field

effects from the circuit. For higher field peaks, the agreement between the experimentally

observed peaks and simulations becomes gradually poorer. As mentioned above, a range

of values for J1 and J2 resulted in good fits for χ, however, varying these values resulted

in near identical plots for dM/dH. It should also be noted that attempts to fit dM/dH

by varying J1 and J2 independent of the DC susceptibility could not produce a quality

fit. Also, attempts to fit the Cr12Gd4 data with QMC were unsuccessful, and therefore

will not be discussed here.

Attempts to fit the Cr12Y4 data on the other hand led to good agreement for both χ

and dM/dH. Fig. 4.12 (a) shows the low temperature DC susceptibility and a FITMART

simulation with three exchange parameters (the full temperature region is shown in the

upper right inset). The antiferromagnetic exchange parameters J1 = -8.5 K, J2 = -8.85

K, and J3 = -7.9 K corresponding to the exchange paths depicted in the lower left inset.

The fit was achieved by treating each Cr6 horseshoe independently and fitting to the

susceptibility for the Y sample divided by two. This effectively reduced the system to

a single Cr6 horseshoe. A plot of the experimental and simulated dM/dH is shown in

Fig. 4.12 (b), resulting in a much better agreement than observed for the plain Cr6 horse

shoe. For this fit, J1 remain approximately the same, while the parameters J2 and J3

are larger than the values used for the corresponding exchange pathways in Cr6. This

suggests that the addition of the Ln ions “tightens” the outer Cr6 exchange paths giving

rise to the shifts towards higher fields in dM/dH.
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4.5 Conclusions

DC susceptibility measurements indicate AFM ordering for Cr ions in the {Cr6}2

horseshoes with an S = 0 ground state. The addition of non magnetic Ln ions Y and

Eu offer a negligible affect on the DC susceptibility and magnetization measurements.

Systems containing magnetic Ln ions (Gd, Tb, Dy, Ho, Er, Yb), on the other hand,

show a large contribution from these large 4f moments which behave like non-correlated

paramagnetic ions. Curie-Weiss fits for the low temperature susceptibility suggest the

onset of weak antiferromagnetic interactions at low temperatures. This result is sur-

prising as many interactions featuring Gd and transition metals are ferromagnetic as a

result of a charge transfer mechanism. Unfortunately DC measurements were limited to

a base temperature of 2 K and a determination of the ground state was not possible.

However, the χT data did leave open the possibility of a high spin ground state despite

the apparent AFM interaction.

Plots of M(H) at 7 T demonstrate a magnetic moment equivalent to half that ex-

pected for non-interacting triply-ionized Ln ions when the orbital angular momentum

is not quenched, L 6= 0, however, the orbitally quenched L = 0 Gd sample shows good

agreement with theoretical calculations for four paramagnetic Gd moments in field. This

suggests the large anisotropy arising from the orbital angular momentum dramatically

reduces the magnitude of the local moment at the Ln ions. This fact in itself is not

surprising as the orbital anisotropy is well known to cause a canting of the Ln moments.

What is surprising is that all L 6= 0 systems show a reduction of the local moment by

precisely half the free ion magnitude, independent of gJ , S, L, and J .

The TDR measurements for dM/dH in pulsed fields show a rich spectrum of ground

state and excited state level crossing transitions. The addition of Ln ions appears to

act as a perturbation to the Cr horseshoes shifting the transitions to higher fields and

not dramatically altering the quantum energy levels. The Gd sample demonstrates a
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double feature for ground state and excited state transitions and it is not clear at this

time whether this result is an effect of the quenched orbital angular momentum.

Attempts to characterize the dM/dH behavior by fitting the DC susceptibility for

the Cr horseshoe by direct diagonalization and the Gd sample with QMC yielded poor

agreement with the dM/dH data, with the discrepancy increasing at higher fields. Given

the good fit for χ(T ) it might be possible to attain a better fit in dM/dH by using

additional exchange constants for the Cr horseshoe. Since χ(T ) reflects the susceptibility

of the complete energy spectrum, it is possible there exists another set of exchange values

which well reproduce χ(T ) and offers a better characterization of the lowest energy

levels observed in dM/dH, as seen in Cr10Cu2 where two different sets of exchange

constants accurately reproduce the weak-field susceptibility while slightly altering the

field dependence of the ground state level crossings. Despite this poor agreement for

the Cr6 horseshoe, fits of χ(T ) using three exchange parameters for Cr12Y4 reproduces

the dM/dH data quite well. This fit slightly increases the magnitude of the exchange

paths for the Cr sites at the edges of the horseshoe shifting the peaks in dM/dH towards

higher fields with respect to the plain Cr6 horseshoe.
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Figure 4.6: (Color online) Pulsed field data after subtracting background from the empty
coil. The low-field behavior below 2 T arises from the 4 paramagnetic Ln ions, if present.
Remaining linear background contributions arise from disparate pulse conditions com-
pared to the empty coil shots. The inset shows peaks observed in the low field region
below 1.5 T for the Dy and Tb samples.
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Figure 4.7: (Color online) Pulsed field data after subtracting the paramagnetic back-
ground at: (a) T = 600 mK and (b) T = 2.5 K. Even in pulsed fields, a rich spectra of
excited level crossings are observed at 2.5 K.
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Cr12Gd4 in DC field at a sweep rate of 0.1 T/min.
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Figure 4.9: (Color online) FITMART fits of the DC susceptibility for {Cr6}2 for J1 =
-8.55 K and two values for J2. J1 corresponds to exchange values between three inner
Cr-Cr sites, while J2 corresponds to the two Cr-Cr sites at each end of the horseshoe. A
good fit is obtained which accounts for the peak at 4 K and the shoulder near 20 K. The
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inset is a cartoon depiction of the exchange parameters used.
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CHAPTER 5. INVESTIGATION OF FRUSTRATION IN

W72V30 ICOSIDODECAHEDRON

5.1 Introduction

New successes in the area of polyoxometalate chemistry led to the synthesis of a

family of large and quasi-spherical magnetic molecules consisting of 30 paramagnetic ions

bridged by metal-oxygen ligands [5, 50–59]. The paramagnetic ions occupy the vertices

of corner-sharing triangles of an icosidodecahedron - an Archimedian solid featuring

20 trangular faces and 12 pentagonal faces. The series consists of Mo72Fe30 [60–62],

Mo72Cr30 [63], Mo72V30 [64, 65], and most recently W72V30 [66].

Figure 5.1: (Color online) Icosidodecahedron structure formed by the paramagnetic ions
in the frustrated Keplerate magnetic molecules. The red spheres represent the 30 spin
sites with 60 edges corresponding to exchange pathways between nearest-neighbor spins.
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Fig. 5.1 illustrates the location of spin sites on the icosahedron. In this representation,

the 60 black edge sites can be viewed as the interaction pathways between paramagnetic

ions. If the interactions between ions in a triangular arrangement are antiferromagnetic

in favor of an antiparallel aligned ground state, then the system is said to be geometrically

frustrated [67–69]. In this sense the icosidoecahedron systems would serve as a finite-

sized representation analogous to the archetypical class of two-dimensional frustrated

systems known as kagomé lattice antiferromagnets [15, 16, 70–74].

These antiferromagnetically coupled frustrated systems exhibit unique properties

compared to the 1-dimensional AFM ring systems discussed in Chapters 3 and 4 [75–77].

The first feature is the existence of many low-lying singlet states below the first excited

state. The second feature is an extended plateau of the magnetization at an applied field

of 1/3 the value of the saturation field at low temperatures. The third feature is a large

jump to saturation as a function of applied fields associated with a large magnetocaloric

effect [78, 79]. It is the hope that valuable insight about the physics of lattices such as

the kagomé lattice can be gained by studying the DC magnetization, and local static and

dynamic properties via NMR, and theoretical quantum calculations of these finite-size

bodies.

Surprisingly, plots of the low-temperature magnetization versus external field H of

Mo72Fe30 and Mo72Cr30 deviate substantially from the expectation for a regular icosi-

dodecahedron with a single nearest-neighbor exchange interaction [55]. Although the

temperature dependence of the weak-field susceptibility could be well reproduced by

a Heisenberg model with a single exchange constant, the low-temperature magnetiza-

tion could not. Later investigations revealed a strong dependence at low temperatures

T of the differential susceptibility dM/dH on T and H [55, 80]. These results were ex-

plained in the framework of classical spin dynamics by assuming a distribution of random

nearest-neighbor exchange interactions [55, 80]. This means that the exchange interac-

tions between nearest neighbor spins of each molecule in the bulk sample are selected from
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a random distribution whose mean exchange constant reproduces the high-temperature

results. The mere fact that exchange interactions of a real substance might fluctuate

around a mean value might not be surprising. What is indeed surprising is the large

spread of values that had to be assumed: the exchange interactions J had to vary from

half to twice the mean J (in the non-symmetric distribution) [55].

This work discuss the magnetic properties of a recent member of the family of Ke-

plerates, W72V30, where 30 V4+ ions (spins s = 1/2) occupy the sites of the icosidodeca-

hedron. In a previous work, the high temperature (T > 70 K) part of the susceptibility

data measured at H = 0.5 T could be successfully explained using the quantum Monte

Carlo method (QMC) on choosing the antiferromagnetic nearest-neighbor exchange con-

stant J = -57.5 K and the spectroscopic splitting factor g = 1.95 [66]. These numerical

values are associated with a Heisenberg Hamiltonian written as

H = −2J
∑
〈i,j〉

Si · Sj + gµBH
∑
i

Szi . (5.1)

Here 〈i, j〉 indicates a sum over distinct nearest-neighbor pairs and µB denotes the Bohr

magneton. The QMC method could not be used to establish the magnetic properties

of this system below 70 K due to the well-known negative-sign problem for frustrated

spin systems [81]. Herein lies the important advantage of W72V30: Due to the small

spin quantum number, S = 1/2, of the individual V4+ ions, rather than using classical

methods, highly accurate quantum calculations can be performed despite the huge size

(230 = 1, 073, 741, 824) of the Hilbert space dimension for this system. As shown below,

we are able to calculate the relevant thermodynamic observables as functions of both

temperature and applied field by means of the Finite-Temperature Lanczos Method

(FTLM) [17, 18] conducted by Prof. Schnack. In particular, we are able to show that

calculations based on Eqn. (5.1) on choosing a single value of J do not agree with

the measured susceptibility data below 15 K and especially the field-dependence of the

low-temperature magnetization. However, we are able to achieve reasonable agreement
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between theory and experiment upon generalizing Eqn. (5.1) so that the numerical value

of the exchange constant for any given nearest-neighbor pair is selected using a broad

probability distribution constrained so that the mean value equals -115 K. Our analysis

allows us to estimate the magnitude of the exchange disorder in the compound. As

for the other Keplerates, that magnitude is surprisingly large, given the fact that x-ray

structure investigations point to a highly symmetric exchange network.

5.2 Experimental details

Polycrystalline samples of W72V30 = K14(VO)2 [K20 ⊂{(W)W5O21(SO4)}12(VO)30(SO4)

(H2O)63] · ca.150H2O ≡ K14(VO)2·1a ca.150H2O (MM = 25826.87 g/mol) were synthe-

sized using the procedure given in Ref. [66]. The temperature dependence of the magnetic

susceptibility χ = M/H for fixed H = 0.1 T was measured in a temperature range of 1.9

- 300 K using a Quantum Design Magnetic Properties Measurement System. Magneti-

zation measurements were made at the high-field facilities at the Institute for Materials

Research (IMR) of Tohoku University by Prof. Nojiri. Using pulsed fields, values of the

magnetization were achieved for field strengths up to 50 T. Two types of cryostats, a

conventional 4He bath type cryostat and a gas-flow type cryostat, were used for the low

and high temperature ranges, respectively.

Nuclear magnetic resonance (NMR) measurements were carried out on 1H (I =

1/2, γ/(2π) = 42.5775 MHz/T) and 51V (I = 7/2, γ/(2π) = 11.193 MHz/T) by using an

in-house phase-coherent spin-echo pulse spectrometer. The NMR spectra were obtained

either by Fourier transform of the echo signal or by sweeping H. The NMR echo signal

was obtained by means of a Hahn echo sequence with a typical π/2 pulse length of 1.0

µs. The nuclear spin-lattice relaxation time T1 was measured by the saturation method

with the frequency at the highest peak position of the NMR spectrum. For this system,

NMR is a powerful tool for studying the magnetic properties and local spin dynamics of
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the intrinsic susceptibility. This is because studies of the local behavior of the 1H and

51V nuclei are well suited to accurately decouple contributions from the impurity ions

and the cluster of interest.

Numerical FTLM calculations for the Heisenberg model were performed on a super-

computer. We employed the SGI Altix 4700 as well as the SuperMIG cluster at the

German Leibniz Supercomputing Center using openMP parallelization with up to 510

cores.

5.3 Weak field susceptibility

DC magnetization measurements were conducted in a Quantum Design SQUID mag-

netometer. A quantity of 150 mg of sample was placed into a gel capsule positioned

inside a straw for measurements, with a 1 × 1 in2 of Kimwipe tissue used to prevent

the powder sample from shifting. To account for the diamagnetic background of the

straw, capsule, and tissue, an empty background was measured. Fig. 5.2 (a) shows

the temperature-dependent magnetic susceptibility χ in an external field of 0.1 T after

correcting for the background, and diamagnetic and temperature-independent param-

agnetic contributions from the sample. The raw experimental data, shown as the red

open circles, follows a Curie-like behavior where the presence of two uncorrelated vanadyl

ions (VO2+) dominates the susceptibility at low temperatures. In order to observe the

intrinsic susceptibility of interest arising from the 30 V ions of the icosidodecahedron it

is necessary to subtract this contribution from the raw data. The calculated impurity

susceptibility from the two V4+ ions of spin S = 1/2 (assuming g = 2) is calculated to

be χimp = 0.712
T

cm3/mol, and shown by the solid blue line in Fig. 5.2 (a). The vanadyl

corrected result is given by the solid black circles corresponding to the intrinsic magnetic

susceptibility χ0 which features a broad peak near 20 K which rapidly decreases below

15 K indicating a singlet ground state. The data for χ0 is shown in an expanded scale



www.manaraa.com

73

in Fig. 5.2 (b). The solid curve corresponds to the results for χ0 as obtained using the

model Hamiltonian of Eqn. (5.1) for the above values J = 115 K and g = 1.95 (the

“single-J model”. Good agreement between theory and experiment is obtained only for

T > 15 K. Below that temperature the two data sets depart markedly from each other.

5.4 Low temperature magnetization

In Fig. 5.3 the solid blue curve corresponds to our data for the intrinsic magnetization

versus external field as obtained by pulsed-field measurements at 0.5 K. The experimen-

tal data is corrected for two lattice VO2+. The black dashed-dotted curve is the result

obtained for the single-J model. Note the striking staircase behavior of the theoretical

curve for this temperature. Surprisingly, the experimental data shows no signs of stair-

case behavior. This negative result is similar to that for Mo72Fe30 and Mo72Cr30. The

latter systems possess much smaller exchange couplings so one could imagine that the

expected steps are more readily washed out due to structural fluctuations or possibly as

a result of single-ion anisotropy or Dzyaloshinskii-Moriya interactions [62]. However, for

the present system the magnetization steps of the theory are so well separated that one

would expect to see at least a hint of them. Moreover, single-ion anisotropy is absent for

V4+ ions with spin s = 1/2.

5.5 Distribution of nearest-neighbor couplings

In view of the above striking discrepancies between experiment and theory, and in par-

ticular the failure of the single-J model, we follow the idea of Ref. [55] and assume that,

due to possible low-temperature structural distortions (as e.g. observed in some kagome

lattices [82–84]) and the great sensitivity of the exchange interaction on the details of the

local environment (highly charged anionic and cationic lattice with many dipolar water

molecules that possibly order), the interaction strength between each nearest-neighbor
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pair of spins is effectively randomly distributed. It is very important at this point to

understand that a symmetric structural distortion that would express itself in just a few

distinct exchange interactions would only alter the staircase in a minor way but could

not wash it out completely. For this to happen one needs a very large number of different

interactions within each and every molecule.

Since the calculations are very computer-intensive we aim for a coarse estimate of the

size of the exchange variation. To this end we used a flat distribution with J̄ − ∆J <

J < J̄ + ∆J and evaluated the magnetic observables for ∆J/J̄ = 0.1, 0.2, 0.3, 0.5, with

the mean J̄ = −115 K. Fig. 5.4 shows the magnetization versus field for various choices

of ∆J . As can be deduced already from a small number of samples, step-like behavior

persists for ∆J/J̄ = 0.2 and below. It turns out that the data for ∆J/J̄ = 0.3 comes

closest to the experimental data, and that choice is shown as the red curve in Fig. 5.3.

Since we averaged over only 50 samples that curve is still somewhat wiggly but it is

sufficiently converged to warrant our conclusions.

Finally, shown in Fig. 5.5 are the results for the intrinsic susceptibility χ0 as obtained

from our measurements, for the single-J model, as well as for exchange variation with

∆J/J̄ = 0.3. We conclude that the introduction of exchange variation yields results that

are in reasonably good agreement with our experimental susceptibility data.

5.6 1H- and 51V-NMR spectrum

The temperature-dependent 1H-NMR spectra were measured for a manetic field H =

2.86 T from 1.8 to 150 K. A single NMR line is observed which broadens upon decreasing

temperature. Fig. 5.6 shows the temperature dependence of the line width determined

by the full width at half maximum (FWHM). For W72V30, the FWHM can be expressed

as the sum a+ bMimp+ cM0. The constant term a originates from nuclear-nuclear dipole

interactions of the order of 10 Oe. The second and third terms represent the dipolar field
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contributions produced by the V4+ from the VO2+ ions and the 30 spins of the intrinsic

magnetic molecule, respectively. The quantities Mimp and M0 are the corresponding

magnetizations and b and c are parameters related to the average dipolar hyperfine

coupling associated with the two sets of V4+ spins. In particular Mimp is proportional to

the standard expression tanh(µBH/kBT ) for uncorrelated spins s = 1/2. The increase

of the FWHM at low temperatures is well reproduced by the above expression with

a ∼ 13 Oe and b ∼ 6 Oe/µB, as shown bt the solid lines in Fig. 5.6 (a). Subtracting

these contributions from the total FWHM, we obtain the intrinsic line width denoted by

(FWHM)0, which is proportional to M0. That data is shown in Fig. 5.6 (b) and it has a

broad peak around 10 K. The solid curve in Fig. 5.6 (b) corresponds to the theoretical

result for M0 for exchange disorder ∆J/J̄ = 0.3 and for an external magnetic field of H

= 2.86 T. The experimental data is in reasonable agreement with the theoretical result.

In this context one should also keep in mind that the NMR relaxation deviates from a

single exponential behavior due to many inequivalent proton positions of this water rich

substance [85, 86].

Fig. 5.7 (a) shows typical 51V-NMR spectra measured at f = 80.7 MHz at various

temperatures. The 51V nucleus has nuclear spin I = 7/2 so that one expects seven

quadrupole-split lines. These spectra can be calculated using a simple nuclear spin

Hamiltonian [87]

H = −γh̄I ·Heff +
hνQ

6
(3I2

z − I(I + 1)), (5.2)

where Heff is the effective field (the sum of the external field H and the hyperfine field

Hhf ) at the V4+ site, h is Planck’s constant, and νQ is the nuclear quadrupole frequency.

The latter quantity is proportional to the Electric Field Gradient (EFG) at the V4+

site (an asymmetric parameter of the EFG is assumed to be zero for simplicity). The

blue curve in Fig. 5.7 (a) shows a typical powder-pattern spectrum calculated from the

simple Hamiltonian with νQ = 0.25 MHz. In order to reproduce the observed spectrum,

one needs to introduce a distribution of νQ. By taking ∼ 40% distributions (∆νQ ∼
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0.1 MHz), one can well reproduce the observed spectrum as shown by the red curve

in the figure. The wide distribution of νQ, which reflects the distribution of the EFG,

indicates a high degree of inhomogeneity of the local environments of the vanadium spins.

In W72V30 the vanadium ions are sixfold coordinated. The vanadium-oxygen distances

which bridge to neighboring vanadium ions vary by about ±0.02 whereas the distances

to the two remaining oxygen sites vary by 0.2 Åwhen comparing the various vanadium

coordination spheres (see crystal structure in [66]). We speculate that this is one source

of the distribution of exchange couplings discussed above.

The temperature dependence of the NMR shift (denoted by K) and FWHM for

the 51V-NMR spectrum is shown in Fig. 5.7 (b); both show a very weak temperature

dependence. The hyperfine coupling constant can be estimated from the T -dependence

of K by comparing with the T -dependence of χ0. The resulting value is very small, less

than 100 Oe/µB. Usually the hyperfine coupling constant for V4+ ions will be dominated

by core-polarization, of the order of 100 kOe/µB [88], which is three orders of magnitude

larger than our result. One might attempt to explain the very small value of K by

suggesting that the separate contributions to the total hyperfine field from, first, intra-

atomic interactions of d-electron orbitals and dipolar hyperfine field and, second, the

transferred hyperfine field due to other V ions, nearly cancel. We believe, that this is

not the case because 1/T1 of 51V is almost 50 times smaller than that of 1H as will

be shown in the following section. Since 1/T1 is given by a sum of all contributions of

the hyperfine fields and each contribution is proportional to the square of the hyperfine

coupling constant, it follows that 1/T1 of 51V should be larger than that of 1H even if the

total hyperfine field is small due to the cancellation. At present we do not have a clear

explanation for the small hyperfine field on V in W72V30. It should however be noted

that the observed V-NMR signal is not coming from non-magnetic V impurities as can

be clearly seen in the 1/T1 data where 51V-T1 shows a similar T -dependence with that

of 1H-T1.
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5.7 Nuclear spin-lattice relaxation

To investigate the dynamical properties of the V4+ spins, we have carried out 1H-T1

measurements in the temperature range 1.5-100 K. We find that 1/T1 is almost indepen-

dent of temperature above ∼ 30 K. Below ∼ 30 K, with decreasing temperature, 1/T1

starts to increase and then shows a peak around 6 K at H = 1.17 T. As the external

magnetic field increases, the peak temperature of 1/T1 shifts to higher temperatures and

at the same time the peak height decreases.

In recent years it has been found, that in many antiferromagnetic rings and clusters

of spins s > 1/2 the quantity 1/T1 is well approximated by the formula

1

T1

= Aχ0T
Γ

Γ2 + ω2
L

, (5.3)

where the electronic correlation frequency Γ is given by a near-universal power law tem-

perature dependence with an exponent in the range 3.5± 0.5, and A is a fitting constant

independent of bothH and T related to the hyperfine field [89–91]. The form of Eqn. (5.3)

is due to the fact that the damping of the equilibrium fluctuations of the z-component of

the total magnetization, Sz, is monoexponential. Specifically this is due to a dynamical

decoupling of Sz from the slow degrees of freedom originating from the discreteness of

the energy spectrum and the conservation law [Sz, H0], where H0 denotes the Heisen-

berg model Hamiltonian of exchange coupled ion spins [92]. It follows from Eqn. (5.3)

that the quantity 1/(T1Tχ0), see Fig. 5.8 (a), has a maximum as a function of T and

fixed H when Γ = ωL, and its maximum value is proportional to 1/H. A quantitative

microscopic theory explaining all of these features has been given in [93] for spins s >

1/2 and in particular the numerical value of the power law exponent originates from

one-phonon acoustic processes. It is significant that, although s = 1/2, our data for

W72V30 below 20 K exhibits the very same behavior, and we find A = 4.7× 1011 rad Hz2

mol/(Kcm3) and Γ = 6.3 × 105T 3.5 rad Hz, where T denotes the temperature in units

of Kelvins. In W72V30 we find that the paramagnetic fluctuations are dominant for the
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high-temperature range where the fluctuation frequency is independent of T .

In general, one expects that Eqn. (5.3) should be supplemented by a second Lorentzian,

where the nuclear Larmor frequency ωL is replaced by the electron Larmor frequency ωe.

However, if Γ is of the order of ωL, the contribution of the second Lorentzian is negligible.

To confirm this experimentally, we performed 1/T1 measurements on two different nuclei,

1H and 51V. Values of T1 for both nuclei were measured at f = 77.8 MHz for 51V-NMR

and at 298 MHz for 1H-NMR, respectively, so as to achieve the same value of ωe, that

is the same magnetic field. The two sets of experimental data are shown in Fig. 5.8 (b)

and they are both successfully fitted by Eqn. (5.3) (solid curves). If in Eqn. (5.3) one

was to include ωe, the peak position of 1/T1 must be observed at the same temperature.

These measurements provide a firm confirmation that the fluctuation frequency of V4+

spins slow down to the order of MHz.[80]

In antiferromagnetic rings and clusters of spins s > 1/2 the peak in 1/(T1Tχ0) is

usually observed for temperatures of the order of the exchange coupling constant [89,

92]. In [93] this is explained by the fact that the relaxation mechanism when s > 1/2

is governed by the quasi-continuum portion of the quadrupolar fluctuation spectrum

and not by the lowest excitation lines. By contrast, in W72V30 we find that the peak

temperature (≈ 6-10 K) is an order of magnitude smaller than J = 115 K. We speculate

that this difference in behavior could be explained by invoking the modifications of the

microscopic theory proposed in [93] for spins s = 1/2, namely by using a dipolar channel

or fluctuating Dzyaloshinskii-Moriya interactions. However, this remains to be confirmed

by detailed calculations that are outside the scope of the present work.

5.8 Conclusions

We have investigated magnetic properties and spin dynamics of W72V30 magnetic

molecules by low temperature magnetization, magnetic susceptibility, proton and vana-
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dium NMR measurements, and theoretical studies. Our most striking experimental

finding is that the field-dependent magnetization at 0.5 K, as obtained using a pulsed

magnetic field, increases monotonically up to 50 T without showing any sign of staircase

behavior. This is contrary to the predictions of any model based on a single value of the

nearest-neighbor exchange coupling. Also we find that a single-J model fails to describe

the temperature dependence of the intrinsic weak-field magnetic susceptibility χ0 below

15 K, as obtained from a SQUID measurement. However, both sets of experimental

observations are reproduced to reasonable accuracy upon introducing a model based on

a broad distribution of values of the nearest-neighbor coupling.

Complementing the SQUID and pulsed fields measurements we have also performed

detailed 1H-NMR and 51V-NMR measurements. We find that the temperature depen-

dence of χ0 as estimated from the proton NMR spectrum is in satisfactory agreement

with that obtained from our SQUID measurements. From 51V-NMR spectrum measure-

ments, a high degree of inhomogeneity of the local environment of V ions is suggested

by the observation of a wide distribution of quadrupole frequencies. Inhomogeneity of

the local environment is also suggested by the temperature dependence of the observed

line width and NMR shift of 51V-NMR. This characteristic of the local environment is

consistent with a large distribution of J-values indicated by the theoretical studies. T1

measurements of both 1H and 51V reveal the existence of slow spin dynamics at low

temperatures. In particular, the fluctuation frequency of the interacting system of V4+

spins is found to show a power law behavior, of the form T 3.5 at temperatures below

30 K, i.e., the same behavior that has been found for many antiferromagnetic rings and

clusters of spins s > 1/2 [90, 93]. Finally, we remark that the need for a multi-J model as

suggested by our experimental and theoretical studies might be correlated to the pres-

ence of significant local distortions of the spherical shape of the W72V30 molecules at

low temperatures. Thus it would be very helpful if low-temperature X-ray diffraction

measurements could test this suggestion.
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Figure 5.2: (Color online) Molar manetic susceptibility at H = 0.1 T as a function of
temperature: (a) measured data of the compound (red circles), contribution of two lattice
VO2+ (solid blue curve), and intrinsic susceptibility χ0 of the Keplerate anion W72V30

(black circles). (b) intrinsic susceptibility χ0 (black circles) and theoretical susceptibility
using the single-J model (see text).
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Figure 5.3: (Color online) Intrinsic magnetization of the Keplerate ion W72V30 as a
function of applied field for T = 0.5 K. Pulsed field data are given by the blue curve, the
theoretical magnetization for the single-J model is shown by the black dashed-dotted
curve, and for the multiple-J model with ∆J/J̄ = 0.3 by the red curve.
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Figure 5.4: (Color online) Intrinsic magnetization of the Keplerate ion W72V30 as a
function of applied field for T = 0.5 K. Curves for various exchange variations ∆J/J̄ are
compared to the pulsed field data.

Figure 5.5: (Color online) Molar magnetic susceptibility, χ0, at H = 0.1 T as a function
of temperature. The curves are the result of our simulations for ∆J/J̄ = 0.3 and 0.
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Figure 5.6: (a) 1H-NMR line width (FWHM) at H = 2.86 T as a function of temperature.
The solid curve shows the fitting result a + bMimp (see text). (b) T -dependence of the
intrinsic line width, (FWHM)0, given by cM0. The solid line is calculated T -dependence
of the magnetization with the exchange disorder ∆J/J̄ = 0.3 for the same field.
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Figure 5.7: (Color online) (a) Typical 51V-NMR spectra measured at f = 80.7 MHz
for various temperatures. The blue curve shows a typical powder-pattern NMR spec-
trum with νQ = 0.25 MHz. The red curve is the simulated NMR spectrum with ∼
40% distribution of νQ. (b) Temperature dependence of 51V NMR shift and line width
(FWHM).
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Figure 5.8: (Color online) (a) T -dependence of 1/(T1Tχ0) for 1H-NMR. Solid lines are
theoretical curves calculated by using Eqn. (5.3). (b) T -dependences of 1/(T1Tχ0) for
1H-NMR (f = 298 MHz) and 51V-NMR (f = 77.8 MHz) at the same magnetic field
H ≈ 7 T (that is, same electron Larmor frequency ωe).
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CHAPTER 6. ELECTRONIC AND MAGNETIC

PROPERTIES OF Ba1−xKxMn2As2 STUDIED BY 55Mn AND

75As NMR

6.1 Introduction

The family of BaTM2As2 (TM = Mn, Fe, Co, Ni, and Zn) compounds have sparked

great research interest as variations in the 3d electron count yield a wide range of physical

properties.[94–96] Systems which share characteristics with parent compounds of both

iron pnictides and high-Tc cuprates could offer a pathway toward further understanding

high-Tc superconductors. In both classes superconductivity can be induced by elec-

tron or hole doping, or by applying high pressures. For example, BaFe2As2 is metallic

with antiferromagnetic (AFM) ordering arising from a spin-density wave from itiner-

ant carriers[96], while La2CuO4 is a local moment AFM insulator [94]. BaMn2As2 and

Ba1−xKxMn2As2 may lead to systems which help characterize the principles of high-Tc

superconductivity.

BaMn2As2 crystallizes in the same elongated ThCr2Si2-type structure as other ‘122’sys-

tems. The magnetic properties are characterized as a G-type local moment AFM with a

high Néel temperature, TN = 625(1) K, and local moment µ = 3.88(4) µB/Mn at 10 K.

The moments arise from Mn2+ ions with local moments of spin S=5/2. The electronic

properties are characterized as a small-band-gap insulator with Egap ≈ 0.05 eV and an

electronic linear heat capacity coefficient γ = 0 [96–98]. In this study we measure the

spectra and spin-lattice relaxation process of 55Mn and 75As-NMR to investigate the
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local magnetic and electronic properties from a microscopic point of view.

Electron doping[99] and pressure mesurements[100] of BaMn2As2 have demonstrated

a transition to metallic ground states. Hole-doping by substitution of K for Ba results

in the metallic system Ba1−xKxMn2As2 with the same ThCr2Si2 crystal structure and

similar magnetic properties. This behavior is observed for x as low as 1.6%. The magni-

tude of the ordered Mn moment has been demonstrated to be nearly independent of x,

but a strong TN dependence on x which decrease by ≈ 140 K at x = 0.4, with respect to

TN = 625 K for x = 0, as determined by neutron diffraction (ND).[101] Recent studies

of single crystals report a small ferromagnetic moment which coexists with the AFM

local Mn moment. The FM arises below approximately 50 K and the low-T saturation

moment is estimated at 0.02− 0.08 µB/Mn, aligned along the ab-plane.[102]

6.2 Experimental details

Single crystals of BaMn2As2 and Ba1−xKxMn2As2 were synthesized group using solid

state reaction out of Sn flux by Dr. Abhishek Pandey of Prof. Johnston’s group.

BaMn2As2 crystals were grown in an alumina crucible then sealed in a quartz tube,

whereas the K-doped systems were sealed inside Ta tubes. Chemical compositions were

determined using energy dispersive x-ray analysis (EDX)[96, 99]. The K-concentration

x for crystals used in this study ranged from 0 ≤ x ≤ 0.4.

Nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation measurements

of 55Mn (I = 5/2; γ/2π = 10.5000 MHz/T) and 75As (I = 3/2; γ/2π = 7.2919 MHz/T)

nuclei were conducted using a homemade phase-coherent spin-echo pulse spectrometer.

A large internal field Hint from the AFM-ordered Mn ions allowed for zero-field and

in-field measurements of the 55Mn nuclei. The 75As-NMR and most 55Mn-NMR spectra

measurements were collected by either sweeping the magnetic field or taking the Fourier

transform of the echo signal. For K-doped systems, the 55Mn-NMR spectra in zero field
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and fields H ‖ ab-plane were collected in steps of frequency by measuring the intensity of

the Hahn spin-echo. The pulse conditions were optimized for the maximum echo intensity

for each frequency point in the NMR spectra. The nuclear spin-lattice relaxation rates

1/T1 were obtained using a conventional single saturation pulse method at the central

transition.

6.3 Zero-field 55Mn-NMR spectrum

Fig. 6.1 shows the 55Mn-NMR spectrum in the AFM-ordered state for BaMn2As2

and Ba1−xKxMn2As2 in zero external field at temperature T = 5 K. For the un-doped

BaMn2As2 spectrum, five very sharp quadrupole-split transition peaks were observed,

where the sharpness indicates a high quality sample. The resonance frequency of the

central transition at f = 242 MHz corresponds to a local hyperfine field of Hhf = 23.05

T. Hhf is proportional to Ahf〈S〉 where Ahf is a hyperfine coupling constant and 〈S〉 is

the average Mn spin moment. The hyperfine field at the Mn sites mainly originates from

core-polarization from 3d electrons and is oriented in a direction opposite to that of the

Mn spin moment. For Hhf = 23.05 T and a reported AFM-ordered spin moment µ =

3.88(4) µB/Mn from neutron diffraction[97], the hyperfine coupling constant is estimated

as Ahf = −59.4 kOe/µB. This experimental value is lower than previously reported

values for Mn of Ahf = −100 kOe/µB[103] suggesting an additional transfer-hyperfine

contribution of Atran ≈ 10.1 kOe/µB from each of the four nearest neighbor (n.n.) Mn

ions. The temperature dependence of the 55Mn spectrum shows only a slight decrease

in resonance frequency, < 10 %, suggesting TN � 300 K in agreement with a reported

value of TN = 625(1) K neutron diffraction[97].

55Mn-NMR spectra for K-doped systems show a broadening of the linewidth and a

shift to lower frequency upon increasing x. The broadening of the linewidth is attributed

to increased spin disorder due to lattice distortion as a result of doping. While five peaks
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Figure 6.1: Zero-field 55Mn NMR spectra at 5 K for different K-concentrations, x with
five sharp quadrupole peaks are observed for x = 0 and 0.04. For larger x, broadening of
the spectrum indicates spin disorder at the Mn sites. The peak observed near 203 MHz
likely arises from a small MnAs impurity.

are observed for x=0.04, the linewidths for K-concentrations of x ≥ 0.099 become too

broad to observe distinct quadrupole split peaks. Further, for x ≥ 0.099, a reduction

of the rf power was needed to maximize the 55Mn-NMR signal. This RF enhancement

suggests coexistence of weak ferromagnetic (FM) ordering with the G-type AFM ordering

in Ba1−xKxMn2As2 consistent with recent studies[102].

Fig. 6.2 plots the peak position of the 55Mn spectra and average Mn spin moment

as a function of K-concentration x. Increasing x shifts the spectrum towards lower
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Figure 6.2: Plot of the central transition peak for zero-field 55Mn NMR spectra and
corresponding magnetic moment per Mn ion assuming a constant hyperfine coupling
constant Ahf = 59.4 kOe/µB. This suggests a net decrease in the local moment as
K-concentration increases.

frequencies, indicating a decrease in the local hyperfine field. If one were to assume

the same hyperfine coupling constant Ahf for the K-doped system as for the un-doped

system, then this indicates a decrease in the average Mn spin moment. The resonance

frequency (average Mn spin moment) decreases by approximately 5 % over the observed

concentrations. This is in contrast to results from neutron diffraction which report almost

no change in the Mn moment from µ = 3.88(4) to 3.85(15) for x = 0 and x = 0.4 single

crystals, or a possible small increase to µ = 4.21(12) and 4.25(12) for x = 0.05 and X =

0.25 powder samples.[99, 101]

A second NMR peak observed near 203 MHz for intermediate concentrations x=0.168

and 0.303 is likely 75As from a small FM MnAs impurity. The existence of a weak FM

transition near T = 325 K in DC magnetization, strong RF enhancement, and the



www.manaraa.com

91

observation of a Korringa relation for 1/T1 are consistent with previous NMR studies

on MnAs [104]. If this signal indeed arises from MnAs impurity, then one would expect

a superposition of the intrinsic 55Mn spectrum and an impurity contribution near 231

MHz ≤ f ≤ 239 MHz.

6.4 In-field 55Mn-NMR spectrum

In applied fields, the local field at the Mn nuclei will be given by
−→
H loc =

−→
H app+

−→
H hf ,

where Happ is the applied magnetic field and Hhf is the local hyperfine field. For G-type

AFM ordering, n.n. Mn moments in the tetragonal plane and Mn moments between

successive planes along the c-axis are antiferromagnetically aligned with ordered moments

oriented along the tetragonal c-axis.

Fig. 6.3 (a) shows a splitting of the zero-field 55Mn-NMR spectra in BaMn2As2 for

Happ ‖ c-axis at 4.2 K. In zero-field the local field at the Mn nuclei is equal to the

hyperfine field: Happ = 0 T; Hloc = Hhf = 23.05 T. For Mn spin moments aligned

parallel (antiparallel) to the c-axis, core-polarization from the Mn 3d-elecrons will yield

hyperfine fields Hhf antiparallel (parallel) to the c-axis at the Mn nuclei. Assuming Hhf

stays constant, Mn spin moments aligned with the c-axis will observe a decrease in Hloc

upon increasing Happ, for Happ ‖ c-axis and |Happ| < |Hhf |. This is observed as a shift in

the 55Mn-NMR spectrum towards lower frequencies. Conversely, shifts towards higher

frequencies correspond to an increase in Hhf arising from Mn spin moments aligned

antiparallel to the c-axis. The field dependent spectra still observe five sharp quadrupole

split peaks suggesting a homogeneous distribution of the nuclear Mn spins. Fig. 6.3

(b) plots the peak position of the quadrupole-split 55Mn NMR spectra as a function of

applied field. The slope is ≈ 10.5 MHz/T, corresponding to the nuclear gyromagnetic

ratio γ for 55Mn.

Fig. 6.3 (c) shows the 55Mn-NMR spectra for Happ ‖ ab-plane at T=4.2 K. In
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Figure 6.3: Field dependent 55Mn NMR spectra. (a) The five quadrupole spectrum
peaks split for external fields applied parallel to the crystallographic c-axis. (b) Field-
dependence of the five quadrupole peak positions for applied field parallel to the c-axis.
(c) Field-dependent spectra for external field applied parallel to ab-plane shows no shift,
but rather a broadening. Field-dependent splitting in (a) and broadening in (c) of the
zero-field spectrum supports G-type AMF ordering along the c-axis of BaMn2As2.

contrast to Happ ‖ c-axis, no splitting of the 55Mn-NMR spectra is observed, but rather

a broadening. In this orientation the applied field is orthogonal to the ordered Mn spin

moments and Hhf , so Hloc =
√
H2
app +H2

hf . For our applied field range, Hhf � Happ,

so Hloc ≈ Hhf and any shift in the spectral frequency would be small. Broadening

is likely caused by field induced canting of the Mn moments causing an inhomogeneous

distribution of Hloc at the Mn nuclei. For measurements in higher fields, one would expect

further broadening and a quadratic shift of the spectrum towards higher frequencies.

The observed field-dependence for 55Mn-NMR spectra from the K-doped systems was

similar to the undoped BaMn2As2 discussed above. These results support a local-moment
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G-type AFM ordering for BaMn2As2 and Ba1−xKxMn2As2 as previously reported.

6.5 75As-NMR spectrum

A clear quadrupole splitting of the 75As-NMR spectrum is observed for BaMn2As2

as a function of temperature in Fig. 6.4. The resonance and quadrupole frequencies are

approximately T -independent for both field orientations in our observed temperature

range. The central transition peak lies just below the reference Larmor field denoted by

the vertical dashed line suggesting the average internal field at the As-nuclei is approxi-

mately zero. The slightly larger shift observed by the central transition for spectra with

H ‖ ab-plane, compared to H ‖ c-axis, likely results from field-induced canting of the

Mn-spin moments in large applied fields, H ∼ 7.5 T.

Fig. 6.5 shows the 75As spectrum for K-doped for H ‖ c-axis. A broadening was

observed for all K-concentrations washing out the sharp quadrupole peaks observed in

the un-doped system. The broadening increased upon increasing K-concentration x and

reduced signal intensity requiring measurements be taken at low temperatures. Despite

the broad spectra, the average internal field is approximately zero as observed in the

un-doped system.

Consider the high-symmetry position of As, located at the center of a square formed

in the ab-plane by four Mn atoms and offset along the c-axis (for further reference see

Johnston et al.[98]). At the As site for G-type ordering, one would expect a complete

cancellation of the fields due to the symmetry of the four n.n. Mn spins. This contrasts

with stripe-type ordering, where Mn spin moments order antiferromagnetically along

the b-axis and ferromagnetically along the a-axis, in which the As site would experience

a net internal field along the b-axis. The lack of any observed internal field from the

75As spectra further supports a local-moment G-type AFM ordering for the parent and

K-doped systems.
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Figure 6.4: (Color online) Three quadrupole split peaks observed for 75As NMR spectra
as a function of temperature for fields applied parallel to the ab-plane (top) and c-
axis(bottom) for BaMn2As2. The small shift from the reference Larmor field indicates
the average internal hyperfine field from the Mn ions is almost zero. The slightly large
shift observed for H ‖ ab-plane likely results from field-induced canting of Mn moments
ordered antiferromagnetically along the c-axis.

6.6 55Mn and 75As spin-lattice relaxation

The T -dependencies of the nuclear spin-lattice relaxation rates for 55Mn in zero field

and 75As were measured at the central transition peak. The longitudinal nuclear mag-

netization recoveries following saturation were fit using standard multi-exponential ex-

pressions. The recoveries for 55Mn (I = 5/2) were fit with the function[105]

Mz(∞)−Mz(t)

Mz(∞)
=

1

35
exp

(
− t

T1

)
+

8

45
exp

(
− 6t

T1

)
+

50

63
exp

(
− 15t

T1

)
, (6.1)
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Figure 6.5: 75As NMR spectra with external field parallel to the c-axis for
Ba1−xKxMn2As2 as a function of K-concentration x.

and 75As (I = 3/2) were fit with the function[106]

Mz(∞)−Mz(t)

Mz(∞)
= 0.1 exp− t

T1

+ 0.9 exp− 6t

T1

, (6.2)

where 1/T1 is the nuclear spin-lattice relaxation rate and M(t) and M(∞) are the nuclear

magnetization after saturation at time t and the nuclear equilibrium magnetization after

sufficiently long time t→∞, respectively.

The T -dependencies of 1/T1 for 55Mn in zero field and for 75As in an external field H

= 7.5 T are shown in Fig. 6.6(a) and Fig. 6.6(b), respectively. Measurements of 1/T1

for 75As were measured with the field applied in both orientations where H ‖ c-axis is

represented by solid circles and H ‖ ab-plane represented by hollow circles in the figure

for respective K-concentrations. Maximum temperatures were limited by signal intensity

which was reduced due to broadening upon doping for both nuclei.

For the un-doped BaMn2As2 system, both nuclei observe a 1/T1 ∝ T n dependence
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Figure 6.6: (Color online) Temperature-dependent spin-lattice relaxation rate 1/T1of
Ba1−xKxMn2As2 for (a) 55Mn NMR in zero field and (b) 75As NMR for fields parallel
to c-axis (solid circles) and parallel to ab-plane (open circles). For both nuclei, a power
law behavior for x = 0 indicates an insulating ground state while the linear behavior for
x > 0 indicates a conducting ground state with conduction electrons in the Mn-3d and
As-4p bands.

for T > 40 K. The deviation from T n behavior for 55Mn below 40 K is likely due to

relaxation associated with defects and/or impurities. For T > 40 K, a good fit for

55Mn is given by 1/55T1 = (4.0 × 10−7s−1K−3.5)T 3.5 with n ≈ 3.5 and for 75As by

1/75T1 = (1.5 × 10−6s−1K−3)T 3 with n ≈ 3. This power law T -dependence for the

nuclear relaxation is consistent with a two-magnon Raman process as the main relaxation

mechanism for an AFM insulating state when T � ∆/kB, where ∆ is the anisotropy

gap in the spin wave spectrum.[107]

Upon K-doping, both 55Mn and 75As follow a Korringa relation, (T1T )−1 = constant,

offering direct evidence of conduction electrons in the Mn 3d and As 4p bands. This

confirms that hole-doping, even at our lowest observed concentration x = 0.04, results

in a metallic state for Ba1−xKxMn2As2. Metallic behavior has been reported for K-
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Figure 6.7: (Color online) (a) Plot of (T1T )−1/2 for 55Mn and 75As NMR as determined
by the fits in Fig. 6.6 indicating an increase in conduction carriers upon increasing K-
concentration x. (b) Plot of the ratio of (T1T )−1/2 for 55Mn and 75As NMR indicating
the orbital-decomposed N(EF ) remains constant upon increasing x.

concentration as low as x = 0.016.[99] The spin-lattice relaxation rate can be expressed

in terms of the density of states as

1/T1 = 4πγeγnhFA
2
hfN(EF )2T, (6.3)

or

(1/T1T )1/2 = const ∗ AhfN(EF ). (6.4)

where γe and γn are the gyromagnetic ratios for the electron and the measured nucleus, h

is Planck’s constant, F is a reduction factor arising from orbital degeneracy, and N(EF )

is the renormalized density of states (DOS) at the Fermi level.[108] Fig. 6.7(a) shows
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(T1T )−1/2 for 55Mn and 75As both increase, indicating an increase in DOS and the Mn

3d and As 4p upon increasing K-concentration x. When plotted as a ratio for 55Mn and

75As,

(1/55T1T )1/2

(1/75T1T )1/2
=

[AhfN(EF )]55

[AhfN(EF )]75

≈ 8, (6.5)

suggests the ratio for the orbital-decomposed N(EF ) of Mn 3d and As 4p is almost

constant over our range of K-concentrations.

6.7 Conclusions

In summary, we report 55Mn and 75As NMR results for band-insulating BaMn2As2

and hole-doped metallic Ba1−xKxMn2As2 (x = 0.04 → 0.4) single crystals. Spectrum

measurements confirm similar G-type local-moment AFM structures for all systems de-

spite a transition from an insulating to metallic states upon K-doping. Shifts of the zero-

field 55Mn spectra towards lower fields suggests increasing K-concentration x results in a

decrease of the local Mn spin moments. The observation of an NMR enhancement effect

in zero-field 55Mn spectra for x ≥ 0.213 supports recent reports of weak ferromagnetic

moment, in addition to the confirmed G-type AFM.

Spin-lattice relaxation measurements T1 for 55Mn and 75As NMR confirm an insu-

lating ground state with 1/T1 ∝ T n for BaMn2As2 and metallic states which follow

a Korringa relation for Ba1−xKxMn2As2, evidence of conduction electrons in the Mn

3d and As 4p bands. While increasing x increases MnN(EF ) and AsN(EF ), the ratio

MnN(EF )/AsN(EF ) appears to be independent of x suggesting orbitally decomposed

Mn-3d and As-4f density of states remain constant for all x. The absence of a structural

phase transition in neutron diffraction measurements and no appreciable shift observed

in the 75As spectra suggest evidence of a previously unobserved coexistence of AFM

ordered Mn spin-moments and weak itinerant ferromagnetism from the Mn 3d orbitals.
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CHAPTER 7. UPPER-CRITICAL FIELD

MEASUREMENTS OF SrFe2(As1−xPx)2

7.1 Introduction

Superconductivity in the AEFe2As2 (AE = Ba, Sr or Ca) family of compounds,

frequently referred to as 122 iron pnictides, can be induced in a variety of ways. It

can be achieved by hole-doping with alkali A metal substitution of alkali earth metal

AE [109–111] as in (Ba1−xKx)Fe2As2, transition metal substitution on Fe site as in

AE(Fe1−xTMx)2As2 [112, 113], or isoelectron substitution on As site as inAEFe2(As1−xPx)2

[114–117]. In the rest of this chapter materials will be labeled by the type of AE and

dopant elements, such as BaK122, BaTM122, or BaP122.

Approximately the same maximum Tc of about 30 K is achieved for most alkali earth

elements and substitutions, which suggests common origin of superconductivity for this

class [118–120]. Another unifying feature is universal observation of superconductivity in

close proximity to stripe-type antiferromagnetic order, with maximum Tc(x) observed at

a doping level close to a critical point where the antiferromagnetic ordering temperature

TN(x)→ 0.

Despite this common phenomenology, studies of the normal state resistivity [121–124]

and superconducting state properties, see for example [125, 126] for review, revealed

unexpected diversity. For example, studies of the superconducting gap structure from

penetration depth [126–128], directional heat transport [129], and heat capacity [130–

133] as a function of doping suggested full gap at optimal doping universally in BaTM122
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and BaK122 [134], evolving towards strongly anisotropic and nodal in the under-doped

and overdoped regimes. A similar trend is found in the other families of iron pnictides,

e.g. Co- and environmentally doped NaFeAs [135] and Ca10-3-8 [136]. In sharp contrast,

the gap is nodal in BaP122 at optimal doping [137], it remains nodal for all compositions,

and clear signatures of a quantum critical point can be tracked in the properties of the

superconducting condensate [138].

Limited data about the superconducting gap structure available for compounds with

other alkali earth metals, different from Ba, suggest that these unique properties of

phosphorus doped compositions may be universal, and are at least observed in SrP122

[139, 140]. It is therefore of interest to get a broader insight into the properties of P-doped

materials.

The upper critical field of iron pnictides was studied systematically over the phase

diagram of BaCo122 [141, 142] and revealed a clear distinction between underdoped and

over-doped regimes. This distinction was suggested to be linked with change of the

topology of the Fermi surface, however, it can be related to the evolution of the super-

conducting gap anisotropy in this family as well. Indeed, in stoichiometric iron-pnictide

superconductors, full gap LiFeAs [143, 144], and nodal KFe2As2 [145–150], studies of the

upper critical fields [2, 3, 151, 152] reveal significantly different temperature dependences.

Relatively little is known about Hc2(T ) of P-doped materials in which measurements so

far were limited to a temperature range close to zero-field Tc [153–155], and in view

of suggested nodal gap structure it is of interest to get insight into the temperature

dependent upper critical field of this system.

This work we reported measurements of the anisotropic upper critical field in single

crystals of optimally doped SrP122, x = 0.35, using the pulsed magnetic field facility at

Los Alamos National High Magnetic Field Laboratory [156]. We find a clear difference

between the temperature-dependent Hc2 for fields along and transverse to the tetragonal

c-axis. The dependence for H ‖ c is close to T -linear, which is very similar to the
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behavior found in previous studies on nodal KFe2As2 [3], but very dissimilar with that

of full-gap LiFeAs [2]. In addition, we find monotonic suppression of Tc, Hc2,a and Hc2,c

with heavy-ion irradiation.

7.2 Experimental details
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Figure 7.1: (Color online) (a) Temperature dependent in-plane resistivity of the represen-
tative sample of pristine SrFe2(As1−xPx)2, x = 0.35. Close to perfect T -linear dependence
is observed in the temperature range from Tc up to 400 K. Resistive transition ends at
∼ 25 K, close to the magnetic transition observed in zero-field TDR measurements (b).
The bottom panel (c) shows TDR frequency shift (in arbitrary units) measured as a
function of magnetic field during pulsed field experiments at indicated temperatures.
The lines show the way the Hc2 was defined from the data as a cross-over point of linear
extrapolation of the rapid frequency drop to the level of the background signal.

Single-crystalline samples of SrFe2(As1−xPx)2 were grown using the self-flux method.Typically

samples had a shape of irregular platelets, with in-plane dimensions (0.3-1)*(0.3-1) mm2
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and thickness 0.02 to 0.1 mm. A sample composition of x=0.35 was determined using

EDX analysis. For our study we used several samples from the same batch. Four Sn-

soldered contacts [157] were attached to one of the samples to measure in-plane resistivity,

plotted using normalized ρ(T )/ρ(300K) in Fig. 7.1(a). The value of ρ(300K) was about

300 µΩ · cm, close to a value found in BaP122. [158]. Samples show very close to perfect

T -linear temperature dependence, which is similar to the dependence found in BaP122

at optimal doping, both for in-plane [137] and inter-plane [158] transport. The resistive

transition is rather sharp, ∆Tc ∼ 2 K, and its end point at 25 K is close to an onset of

a sharp frequency shift in zero-field TDR experiments.

For this study we used two small single crystals from the same batch. One sample

was irradiated with 1.4 GeV 208Pb56+ ions at the Argonne Tandem Linear Accelerator

System (ATLAS) with ion flux of 5x1011 ions·s−1·m−2. The thickness of this sample of

approximately 20 µm was much smaller than stopping distance of the ions, ≈ 60 µm, thus

allowing creation of columnar defects. Assuming that each defect acts as a pinning center

for one magnetic flux quantum, this irradiation corresponds to a matching magnetic field

of approximately 25 T, corresponding to a dose of 12x1012 ions·m−2.

Zero-field measurements on the samples used in pulsed field studies at NHMFL were

performed in a separate TDR setup in Ames laboratory. A typical temperature-scan for

pristine sample of SrP122 is shown in Fig. 7.1(b). Onset of superconductivity at Tc =

25 K provides a clear change of the TDR frequency. Similar frequency variations are

found in isothermal pulsed magnetic field sweeps, as shown in Fig. 7.1(c).

During pulsed field experiments samples were glued with GE varnish to a pancake

coil for the TDR setup. The whole assembly was aligned under the microscope with

respect to sample holder, providing the accuracy within 2◦ with respect to the principal

crystallographic directions.
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7.3 Results and discussion
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Figure 7.2: (Color online) The temperature dependent upper critical fields for pristine
(black open symbols) and irradiated (closed blue symbols) samples of optimally doped
SrFe2(As1−xPx)2 with x = 0.35, as determined from pulsed field measurements in mag-
netic fields parallel to the c-axis (squares) and to the conducting ab−plane (circles). The
lines connect data points and do not show true position of zero-field Tc, determined in
separate experiments.

In Fig. 7.2 we plot Hc2(T ) as determined from pulsed field TDR measurements at

different temperatures for pristine and irradiated samples. Note, that zero-field Tc was

determined in a separate experiment, so that the Hc2(T ) behavior close to zero field

Tc(H = 0) is not well defined. Several features of the data should be mentioned. The

data for magnetic fields perpendicular to the plane field orientation, Hc2,c(T ), in general

follow a T -linear dependence. The data for magnetic fields parallel to the plane, Hc2,a(T),

show a clear tendency for saturation approaching T = 0, which is a common expectation

for both orbital [159] and paramagnetic [160] limiting mechanisms of the upper critical

field.

In Fig. 7.3 we plot the temperature-dependent anisotropy parameter, γ ≡ Hc2,a/Hc2,c,

for pristine and irradiated samples of SrP122. As is common for iron-arsenide supercon-
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ductors, the anisotropy parameter is strongly temperature dependent. In most of the

iron-arsenides the anisotropy parameter monotonically decreases upon cooling [161–163].

Taken in conjunction with flattening of Hc2,a(T ), this fact is frequently discussed as a

signature of paramagnetic effects in magnetic fields parallel to the plane [160]. Alterna-

tively, the same feature of monotonically decreasing upon cooling γ(T ) is explained as a

consequence of strong multi-band effects in iron pnictides [162].

For the description of the upper critical field in SrP122, it is important to understand

the superconducting gap structure of this material. Although the detailed measurements

as a function of doping were not performed yet, the available NMR [139], microwave

[140], and radio-frequency London penetration depth measurements suggest that the

superconducting gap of optimally doped SrP122 is nodal.

The effect of the nodal gap structure on the temperature and angular dependence of

the upper critical field is a long standing problem in the field of unconventional super-

conductivity, stemming back to the early 80’s [164]. While these effects in multi-band

superconductors may be far too complicated [162], we decided to take a purely empirical

approach and compare the temperature dependent Hc2 for various iron-based materials.

Stoichiometric superconductors provide a good reference point. There is ample evidence

that the superconducting gap of LiFeAs, believed to be representative of slightly over-

doped regime [165], is full and practically isotropic with only minor multi-band effects

[143, 144]. The superconducting gap of KFe2As2 is nodal, as suggested by a plethora

of various experiments, although the exact origin (accidental S± or symmetry imposed

d-wave) and location of the nodes is heavily debated [149, 150].

In Fig. 7.4 we compare the Hc2(T ) curves for two principal directions of the applied

magnetic field in SrP122 with those for LiFeAs and KFe2As2. One feature of the data is

obvious. While the Hc2,c(T ) flattens in LiFeAs, as expected for s-wave superconductors in

Werthamer-Helfand-Hohenberg (WHH) theory [159], the dependence is roughly linear in

SrP122 and KFe2As2, - the materials with the nodal superconducting gap. The behavior
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Figure 7.3: (Color online) The temperature-dependent anisotropy parameter γ(T ) ≡
Hc2,a(T )/Hc2,c(T ) in pristine (open circles) and irradiated (closed circles) samples of
SrFe2(As1−xPx)2, x = 0.35.

in magnetic field parallel to the plane is not as different, with all compounds showing

clear signatures of saturation on approaching T = 0.

In Fig. 7.5 we compare the temperature-dependent anisotropy parameter, γ(T ), of

pristine samples of optimally doped SrP122 with γ(T/Tc)/γ(0) in nodal KFe2As2 and

full-gap LiFeAs. Reflecting mainly the difference in the behavior of Hc2,c(T ), the behavior

of γ(T ) is dramatically different for nodeless and nodal materials.

While the saturation of Hc,a2(T ) on approaching T=0 in magnetic field parallel to

Fe-As planes is in line with the predictions of both orbital and paramagnetic mechanisms

of Hc2,a(T ) [159, 160], a near T -linear dependence for H ‖ c is quite exotic, and its origin

is not well understood. Several experimental studies reported nearly T -linear Hc2,c(T ).

Nearly straight Hc2,c(T ) for H ‖ c was observed in MgB2 [166] and was explained in

the orbital-limiting model for two-band superconductivity in the dirty limit. If the two

bands are characterized by the equal diffusivities D1 = D2, the Hc2(T ) follows WHH

type dependence [159], however, if the diffusivity in a weaker band D2 is much smaller
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Figure 7.4: (Color online) The H − T phase diagram of SrFe2(As1−xPx)2, x = 0.35
(red). Normalized H/Hc2(0) is plotted vs. normalized temperature, T/Tc(0). Solid
symbols show Hc2 ‖ c−axis and open symbols show Hc2 ‖ ab−plane. For reference we
show similar plots for full-gap superconductor LiFeAs (green up-triangles) [2], and nodal
KFe2As2 (blue circles) [3].

than the diffusivity D1 in a stronger band, Hc2(T ) has upward curvature. Thus, there is

a ratio D2/D1 at which Hc2(T) becomes nearly straight. Similarly, near T -linear Hc2(T )

was observed in doped iron-based superconductors, BaCo122 [167], BaK122, and FeSeTe

[168]. However, due to very high values of Hc2(0) it is not clear whether this linear

behavior will change to a saturation at the lowest temperatures. In all these materials

the linear T−dependence was explained in a similar multi-band scenario in the dirty

limit, as in MgB2, but the question of whether the dirty limit is achieved is still open

[163]. The T−linear dependence of Hc2 was found in other superconductors. In KOs2O6

it was explained in terms of orbital limiting mechanism, due to missing spatial inversion

symmetry [169]. In organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br, T -linear

dependence was found in magnetic fields parallel to the two-dimensional plane [170,

171]. Interestingly, here the behavior at ambient pressure closely follows a square root

dependence as expected for paramagnetic Pauli limiting [172], while with pressure this
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dependence becomes close to T -linear [170, 171]. A similar trend is found in other organic

superconductors [173], and possible relation of T -linear dependence to the formation

of inhomogeneous Fulde-Ferelle-Larkin-Ovchinnikov state [174] was suggested by the

experiments on samples with varying disorder [175].
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Figure 7.5: (Color online) The temperature-dependent anisotropy parameter γ(T ) ≡
Hc2,a(T )/Hc2,c(T ) normalized to its value at T = 0 in pristine SrFe2(As1−xPx)2, x = 0.35
(filled red circles). For the reference we show γ(T/Tc)/γ(0) in clean iron-pnictide super-
conductors, - nodal KFe2As2 (blue squares) [3], and full-gap LiFeAs (green triangles) [2].

7.4 Conclusions

In summary, using pulsed field tunnel-diode resonator (TDR) measurements, we have

determined the upper critical fields along two principal crystallographic directions in

single crystals of isoelectron-substituted SrFe2(As1−xPx)2 at optimal doping, x = 0.35.

We found that the shape of Hc2(T ) curves is different for the fields perpendicular and

parallel to the tetragonal c−axis. It shows WHH-like behavior with clear saturation as

T → 0 for H ‖ ab−plane and practically T -linear variation for H ‖ c-axis. We show

that the shape of the Hc2(T ) curves is not affected much by heavy ion irradiation, which
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suppresses Tc and Hc2(0) by the same amount. We do not see any special features in the

Hc2,c(T ) line, corresponding to a matching field of 25 T in heavy-ion irradiated samples.

The temperature dependence of Hc2 for two principal directions in SrFe2(As1−xPx)2 is

similar to that found in a nodal superconductor KFe2As2 [3], but is different from that

of fully gapped LiFeAs[2]. This similarity may be suggestive that the anomalous linear

shape of Hc2,c(T ) in iron pnictides may be related to a nodal superconducting gap.
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CHAPTER 8. CONCLUSIONS

This thesis focused on the use of radio-frequency techniques to investigate the static

and dynamic properties of novel magnetic and superconducting materials. A tunnel-

diode resonator is capable of highly precise measurements of the bulk dynamic magnetic

susceptibility, dM/dH. This work has demonstrated the effectiveness of using TDR in

pulsed magnetic fields for investigating the quantum energy levels of antiferromagnet-

ically correlated magnetic molecules Cr12Cu2 and Cr12Ln4, and the anisotropic upper-

critical fields of the P-doped SrP122 superconductor. Nuclear magnetic resonance is

a powerful technique for obtaining a vast range of physical information by investigat-

ing local static and dynamic magnetic properties via hyperfine interactions with high

resolution. NMR spectrum and spin-lattice relaxation measurements illustrate an in-

homogeneous magnetic environment for the 30 V4+ ions in W72V30, revealing a critical

slowing down of the spin dynamics at low temperatures. In Ba1−xKxMn2As2, NMR spec-

tra measurements are capable of determining the nature of the local AFM environment

while spin-lattice relaxation measurements characterize the conducting and insulating

electronic properties.

The work presented on Cr12Cu2 in Ch. 3 successfully demonstrates the first im-

plementation of TDR for detecting quantum spin transitions of magnetic molecules in

pulsed magnetic fields. TDR demonstrates the ability to detect, not only transitions be-

tween H-dependent magnetic ground states, but also transitions involving excited energy

levels which cannot be observed in conventional static magnetometry methods employed

in pulsed magnetic fields (see Fig. 3.3 and Fig. 3.4). In order to observe the excited
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level crossings, there must exist some weak anisotropic contribution to the spin Hamil-

tonian introducing a small energy gap, δ, in the form of an avoided level crossing. If the

thermal energy is sufficiently high as to allow significant population of excited energy

levels, then these otherwise forbidden energy level crossings are observed if the TDR

frequency is sufficiently large compared to the energy gap, h̄ω ≥ δ. Previous theoretical

worked achieved a theoretical description used QMC with a purely isotropic Heisenberg

Hamiltonian to characterize the weak-field susceptibility. The system was well described

by three exchange constants which were then used to calculate the low-temperature dif-

ferential susceptibility versus magnetic field. Experimental results were compared with

these QMC calculations showing excellent agreement for the field values of the energy

level crossings. Therefore, this work determines that TDR, in conjunction with QMC,is

a successful and unique tool for investigating the spectra of low lying energy levels in

AFM magnetic molecules.

Studies in Ch. 4 of the family of AFM magnetic molecules Cr12Ln4 use DC SQUID

magnetometry and TDR measurements of the dynamic susceptibility in pulsed fields to

study 3d-4f interactions in finite-sized spin clusters. DC susceptibility measurements

indicate AFM ordering for Cr ions in the {Cr6}2 horseshoes, and for systems containing

non magnetic Ln ions Y and Eu, with an S = 0 ground state. Systems containing

magnetic Ln ions (Gd, Tb, Dy, Ho, Er, Yb), on the other hand, show a large contribution

from the 4f moments. Curie-Weiss fits for the low temperature susceptibility suggest the

onset of weak antiferromagnetic interactions at low temperatures, a surprising result as

many Gd-transition metal interactions are ferromagnetic as a result of a charge transfer

mechanism. While DC measurements of χT were unable to definitively determine a S

= 0 ground state, leaving open the possibility of high spin ground states despite the

apparent AFM interaction for systems with magnetic Ln ions.

Plots of the DC magnetization M(H) at T = 2 K were used to determine the values

of gJJ for systems containing magnetic Ln ions. For the Gd sample, with quenched
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orbital angular momentum L = 0, the Gd ions act as model Heisenberg moment in

good agreement with theoretical calculations. Results for systems with Ln ions where

L 6= 0 suggest a large anisotropy arising from the orbital angular momentum, reduces

the magnitude of the local moment to approximately half the free ion value, independent

of gJ , S, L, and J .

The TDR measurements for dM/dH in pulsed fields show a rich spectrum of ground

state and excited state level crossing transitions. The addition of Ln ions appears to act

as a perturbation to the Cr horseshoes shifting the transitions to higher fields, without

dramatically altering the quantum energy levels. The Gd sample demonstrates a double

feature for ground state and excited state transitions and it is not clear at this time

whether this result is an effect of the quenched orbital angular momentum. Further, the

observation of a large peak at low field for the Tb sample is likely the result of a quantum

spin transition arising from Tb-Cr interactions.

Attempts to were made to characterize dM/dH for the Cr horseshoe and Cr12Y4 by

characterizing the DC susceptibility with an isotropic Hamiltonian. While the exchange

parameters were adjusted to obtain good fits for χ, but only fits for the Y sample demon-

strated good agreement in dM/dH with the TDR data. A better fit of dM/dH for the

Cr horseshoe might be attainable using a third exchange constant. However, we note

that since χ(T ) provides a probe of the complete energy spectrum, it is possible another

set of exchange values could also reproduce χ(T ) and better characterize experimental

observations. This argument can be justified as two different sets of exchange constants

accurately reproduce the weak-field susceptibility for Cr10Cu2 slightly altering the field

dependence of the ground state level crossings.

Investigations of the low temperature magnetization, magnetic susceptibility, proton

and vanadium NMR, and theoretical studies presented in Ch. 5 were conducted to

investigate the magnetic properties and spin dynamics of the geometrically frustrated

magnetic molecule W72V30, and finite representation of the 2-dimensional kagomé lattice.
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The most striking experimental finding is that the field-dependent magnetization at 0.5

K, as obtained using a pulsed magnetic field, increases monotonically up to 50 T without

showing any sign of staircase behavior in contrast to predictions based on single value

nearest-neighbor exchange coupling. Further, we find that a single-J model fails to

describe the temperature dependence of the intrinsic weak-field magnetic susceptibility χ0

below 15 K, as obtained from SQUID measurements. However, both sets of experimental

observations are reproduced to reasonable accuracy upon introducing a model based on

a broad distribution of values of the nearest-neighbor coupling.

1H-NMR and 51V-NMR measurements were conducted to investigate the local mag-

netic properties. We find the temperature dependence of χ0 estimated from the proton

NMR spectrum is in satisfactory agreement with SQUID measurements. A high degree

of inhomogeneity of the local environment of V ions is suggested by the observation of

a wide distribution of quadrupole frequencies, as well as the temperature dependence

of the observed line width and NMR shift for 51V-NMR spectrum measurements. This

characteristic of the local environment is consistent with a large distribution of J-values

indicated by the theoretical studies. T1 measurements of both 1H and 51V reveal the

existence of slow spin dynamics at low temperatures. In particular, the fluctuation fre-

quency of the interacting system of V4+ spins is found to show a power law behavior,

of the form T 3.5 at temperatures below 30 K, i.e., the same behavior that has been

found for many antiferromagnetic rings and clusters of spins s > 1/2 [90, 93]. The

need for a multi-J model as suggested by experimental and theoretical studies might be

correlated to the presence of significant local distortions of the spherical shape of the

W72V30 molecules at low temperatures which could be tested by low-temperature X-ray

diffraction measurements.

Ch. 6 presents 55Mn and 75As NMR spectra and spin-lattice relaxation studies to

investigate the local magnetic and electronic properties for band-insulating BaMn2As2

and hole-doped metallic Ba1−xKxMn2As2 (x = 0.04 → 0.4) single crystals. Spectrum
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measurements confirm all systems possess similar G-type local-moment AFM structures

despite a transition from insulating to metallic states. Shifts of the zero-field 55Mn

spectra towards lower fields suggests increasing K-concentration x results in a decrease

of the local Mn spin moments. The observation of an NMR enhancement effect in zero-

field 55Mn spectra for x ≥ 0.213 supports recent reports of weak ferromagnetic moment,

in addition to the confirmed G-type AFM.

Spin-lattice relaxation measurements T1 for 55Mn and 75As NMR confirm an insu-

lating ground state with 1/T1 ∝ T n for BaMn2As2 and metallic states which follow

a Korringa relation for Ba1−xKxMn2As2, evidence of conduction electrons in the Mn

3d and As 4p bands. While increasing x increases MnN(EF ) and AsN(EF ), the ratio

MnN(EF )/AsN(EF ) appears to be independent of x suggesting orbitally decomposed

Mn-3d and As-4f density of states remain constant for all x. The absence of a structural

phase transition in neutron diffraction measurements and no appreciable shift observed

in the 75As spectra suggest evidence for a previously unseen coexistence of AFM ordered

Mn spin-moments and weak itinerant ferromagnetism from the Mn 3d orbitals.

In Ch. 7, pulsed field tunnel-diode resonator (TDR) measurements determined the

upper critical fields along two principal crystallographic directions in single crystals of

isoelectron-substituted SrFe2(As1−xPx)2 at optimal doping, x = 0.35. The shape of

the Hc2(T ) curves demonstrate an anisotropy for fields perpendicular and parallel to

the tetragonal c−axis showing WHH-like behavior with clear saturation as T → 0 for

H ‖ ab−plane and practically T -linear variation for H ‖ c-axis. It is shown that the

shape of the Hc2(T ) curves is not affected by heavy ion irradiation, which suppresses

Tc and Hc2(0) by the same amount. We do not see any special features in the Hc2,c(T )

line, corresponding to a matching field of 25 T in heavy-ion irradiated samples. The

temperature dependence of Hc2 in SrFe2(As1−xPx)2 is similar to that found in a nodal

superconductor KFe2As2 [3], but different from that of fully gapped LiFeAs[2]. This

similarity may be suggestive that the anomalous linear shape of Hc2,c(T ) in iron pnictides
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may be related to a nodal superconducting gap.

In conclusion, this thesis demonstrates the diversity of physical systems where RF

techniques are effective tools for studying magnetic and superconducting properties. The

utility of TDR has grown over recent years to explore more materials and effects and

is well suited for detecting quantum spin transitions and phase transitions. Meanwhile,

NMR is an already well understood method exploited across a diverse span of scientific

disciplines. In the physical sciences, these powerful techniques will continue to develop

in order to discover new and exciting physics.
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